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MULTIPLICATIVE GROUPS OF INTEGERS WITH

SEMI-PRIMITIVE ROOTS MODULO n

Ki-Suk Lee, Miyeon Kwon, and GiCheol Shin

Abstract. Consider a multiplicative group of integers modulo n, de-
noted by Z

∗
n
. Any element a ∈ Z

∗
n

is said to be a semi-primitive root if
the order of a modulo n is φ(n)/2, where φ(n) is the Euler phi-function.
In this paper, we discuss some interesting properties of the multiplicative
groups of integers possessing semi-primitive roots and give its applications
to solving certain congruences.

1. Introduction

Given a positive integer n, the integers between 1 and n that are coprime
to n form a group with multiplication modulo n as the operation; it is denoted
by Z

∗

n and is called the multiplicative group of integers modulo n.
For any integer a coprime to n, Euler’s theorem states that aφ(n) ≡ 1 mod

n, where φ(n) is the Euler’s totient function (see [1]), that is, the number of
elements in Z

∗

n and a is said to be a primitive root modulo n if the order of a
modulo n is equal to φ(n). It is well known (see [4], [5], and [6]) that Z∗

n has a
primitive root, equivalently, Z∗

n is cyclic if and only if n is equal to 1, 2, 4, pk,
or 2pk where pk is a power of an odd prime number. This leaves us questions
about Z∗

n that does not possess any primitive roots.
In this paper, we explore noncyclic multiplicative groups of integers. As

a first step, we showed in [3] that if there are no primitve roots modulo n,
aφ(n)/2 ≡ 1 mod n for any integer a coprime to n. This motivates the following
definition.

Definition 1. An integer a is said to be a semi-primitive root modulo n if the
order of a modulo n is equal to φ(n)/2.

Clearly, if Z∗

n possesses a primitive root a, there also exists a semi-primitive
root in Z

∗

n such as a2. Furthermore, the following theorem was proved in [3] to
give a classification of noncyclic groups possessing semi-primitive roots.
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Theorem 1. Let Z∗

n be the multiplicative group of integers modulo n that does

not possess any primitive roots. Then Z
∗

n has a semi-primitive root if and only

if n is equal to 2k (k > 2), 4pk1
1 , pk1

1 pk2
2 , or 2pk1

1 pk2
2 , where p1 and p2 are odd

prime numbers satisfying (φ(pk1
1 ), φ(pk2

2 )) = 2.

In Section 2, we discuss a representation for noncyclic groups possessing
semi-primitive roots. Section 3 provides a constructive way of finding semi-
primitive roots and the least positive semi-primitive root modulo n for each n
less than 100 is given in Table 1. In Section 4, semi-primitive roots will be used
to solve certain congruences.

2. The semi-primitive root theorem

It is shown in [2] that 3 is a semi-primitve root modulo 2k for any integer k
greater than 2 and Z

∗

2k , k > 2 can be represented as

Z
∗

2k = {±3i mod n : i = 1, . . . , 2k−2}.

In this section, we extend this result to show that any non-cyclic multiplica-
tive group of integers possessing a semi-primitive root has the same represen-
tation as Z

∗

2k . Throughout the paper, we denote the least common multiple
and the great common divisor of two integers m and n by [m, n] and (m, n),
respectively.

Theorem 2 is also shown in [3]. Here we give a simpler proof.

Theorem 2. Suppose Z
∗

n
∼= C2 × Cφ(n)/2. Then there exists a semi-primitive

root h ∈ Z
∗

n such that

Z
∗

n =
{

± hi mod n : i = 1, . . . ,
φ(n)

2

}

.

Proof. Let h be a semi-primitive root of Z∗

n and
〈

h
〉

be the subgroup of Z∗

n

generated by h. If −1 /∈
〈

h
〉

, then
〈

h
〉

∩
〈

−1
〉

= {1} and therefore
〈

h
〉

×
〈

−1
〉

is a desired representation for Z∗

n.
Let us now assume that Z

∗

n =
〈

a
〉

×
〈

h
〉

for some a ∈ Z
∗

n of order 2 and

−1 ∈
〈

h
〉

. Then 2 | φ(n)
2 and

〈

h
〉

=
〈

h2
〉

×
〈

− 1
〉

∼= Cφ(n)/4 × C2, where
(φ(n)

4 , 2
)

= 1; otherwise Cφ(n)/4 × C2 cannot be cyclic. Putting together, we

conclude that Z∗

n =
〈

a
〉

×
〈

h2
〉

×
〈

− 1
〉

=
〈

ah2
〉

×
〈

− 1
〉

. �

For the purpose of differentiation, any semi-primitive root h in Z
∗

n is said to
be a good semi-primitve (GSP) root if Z∗

n can be expressed as

Z
∗

n =
〈

h
〉

×
〈

− 1
〉

.

We note immediately that the preceding theorem has the following corollary.

Corollary 1. Suppose that Z∗

n is a noncyclic group possessing semi-primitive

roots. Then Z
∗

n has exactly 2φ(φ(n)2 ) incongruent GSP roots.
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Proof. According to Theorem 2, Z∗

n =
〈

h
〉

×
〈

− 1
〉

for a semi-primitve root

h ∈ Z
∗

n. In other words, any element a ∈ Z
∗

n can be expressed a = hi or −hi,
where i = 1, 2, . . . , φ(n)/2.

For the case of a = hi, ordn(h
i) = ordn(h)

(

ordn(h), i
) = φ(n)/2

(

φ(n)/2, i
) , where ordn(a)

indicates the order of a modulo n. This implies that

ordn(h
i) =

φ(n)

2
⇐⇒

(

φ(n)

2
, i

)

= 1.

Since h is a GPS root modulo n, it is also clear that (hi)j 6= −1 for all integers

j. Therefore we can say that there are φ(φ(n)2 ) incongruent GSP roots in Z
∗

n

in the form of hi.
Now we will show that there are also φ(φ(n)2 ) incongruent GPS roots modulo

n in the form of −hi. More precisely, −hi is a GSP root modulo n if and only

if (φ(n)2 , i) = 1. We first note that

ordn(−hi) = [2, ordn(h
i)] =

2 ordn(h
i)

(2, ordn(hi))
=

φ(n)
(

φ(n)
2 , i

)(

2, φ(n)/2
(φ(n)/2, i)

) .

Then ordn(−hi) = φ(n)
2 if and only if

(φ(n)
2 , i

)

(2, φ(n)/2
(

φ(n)/2, i
) ) = 2. In other

words,

ordn(−hi) =
φ(n)

2
⇐⇒

(1)
(φ(n)

2 , i
)

= 1 and
(

2, φ(n)
2

)

= 2 or

(2)
(φ(n)

2 , i
)

= 2 and
(

2, φ(n)
4

)

= 1.

Since φ(n)
2 is even for the cases under our consideration, the first case is simply

(φ(n)
2 , i

)

= 1. If (φ(n)2 , i) = 1, (−hi)j 6≡ −1 for all integers j: Suppose that

(φ(n)2 , i) = 1 and (−hi)j ≡ −1 for an integer j. Then j must be an odd integer

since h is a GPS root modulo n, which gives us hij ≡ 1, equivalently φ(n)
2 | ij.

Since (φ(n)2 , i) = 1, we end up with φ(n)
2 | j and so j is an even integer since

φ(n)
2 is even, leading a contradicton.

For the second case, if
(φ(n)

2 , i
)

= 2 and
(

2, φ(n)
4

)

= 1, φ(n)
4 is an odd integer

and i is an even integer. Then
(

−hi
)

φ(n)
4 = (−1)

(

h
φ(n)

2

)
i
2 ≡ −1 mod n, which

means that any semi-primitive root modulo n in the second case is not a GSP.
This completes the proof that −hi is a GSP root modulo n if and only if

(φ(n)2 , i) = 1. �

In fact, the proof of Corollary 1 shows us that if Z∗

n is a noncyclic group

possessing semi-primitive roots and φ(n)/4 is an odd intger, then Z
∗

n has φ(φ(n)4 )

more semi-primitive roots in addition to 2φ(φ(n)2 ) GSP roots.
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3. Finding GSP roots modulo n

While Section 2 is about the existence of GPS roots in a certain class of
multiplicative groups of integers, a constructive way of finding a GPS root is
given in this section.

Theorem 3. Let m1 and m2 be coprime integers possessing primitive roots

a and b, respectively. If (φ(m1), φ(m2)) = 2, there exist semi-primitive roots

modulo n = m1m2 and the solution to the system of linear congruences

(1)
x ≡ a mod m1

x ≡ −b mod m2

is a GSP root modulo n.

Proof. Chinese Remainder theorem ensures us that the system in (1) has a
unique solution modulo n, say x0. Then the fact that a and b are primitive
roots and (m1,m2) = 1 takes us to

x
[φ(m1),φ(m2)]
0 ≡ 1 mod n.

Suppose xk
0 ≡ 1 mod n, equivalently ak ≡ 1 mod m1 and (−b)k ≡ 1 mod m2.

Since a is a primitive root modulom1, φ(m1) | k and, applying (φ(m1), φ(m2))=
2, we get that k is an even integer. Then (−b)k = bk ≡ 1 mod m2, equivalently
φ(m2) | k. Therefore

ordn(x0) = [φ(m1), φ(m2)] =
φ(m1)φ(m2)

2
=

φ(n)

2
.

This concludes that x0 is a semi-primitive root modulo n. What remains is to

show that x
φ(n)/4
0 6≡ −1 mod n and hence x0 is a GSP root modulo n.

Assume that x
φ(n)/4
0 ≡ −1 mod m1m2. Then, the first congruence x ≡ a mod

m1 gives

−1 ≡ (a
φ(m1)

2 )
φ(m2)

2 ≡ (−1)
φ(m2)

2 mod m1

and therefore φ(m2)
2 is an odd integer. In the meantime, the second congruence

x ≡ −b mod m2 gives

−1 ≡ ((−1)
φ(m2)

2 )
φ(m1)

2 (b
φ(m2)

2 )
φ(m1)

2 ≡ (−1)
φ(m1)

2 (−1)
φ(m1)

2 ≡ 1 mod m2,

which is a contradiction. �

We now provide an example that illustrates the calculation procedure claimed
in Theorem 3.

Example 1. Find all GSP roots modulo 93.

Solution. According to Corollary 1 and Theorem 3, there are 2φ(30) incon-
gruent GSP roots modulo 93 and the solution for the system of congruences

x ≡ 3 mod 31
x ≡ −2 mod 3
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is a GSP root modulo 93. The solution of the system is x ≡ 34 mod 93 (See [6]
for solving the system of linear congruences) and hence GSP roots modulo 93
are ±34i for positive integers i coprime to 30.

For the reader’s convenience, the least primitive root and the least GSP root
modulo n for each integer n ≤ 100 are given in Table 1.

Table 1. Least primitive root and GSP root modulo n

n P GSP n P GSP n P GSP n P GSP
1 1 26 7 51 5 76 13
2 1 27 2 4 52 7 77 2
3 2 1 28 5 53 2 78 7
4 3 1 29 2 54 5 7 79 3 2
5 2 30 7 55 2 80
6 5 1 31 3 7 56 81 2 4
7 3 2 32 3 57 5 82 7
8 3 33 5 58 3 83 2 3
9 2 4 34 3 59 2 3 84

10 3 35 2 60 85
11 2 3 36 5 61 2 86 3 9
12 5 37 2 62 3 7 87 2
13 2 38 3 5 63 88
14 3 9 39 2 64 3 89 3
15 2 40 65 90 7
16 3 41 6 66 5 91
17 3 42 11 67 2 4 92 3
18 5 7 43 3 9 68 3 93 13
19 2 4 44 3 69 2 94 5 3
20 3 45 2 70 3 95 2
21 2 46 5 3 71 7 2 96
22 7 3 47 5 2 72 97 5
23 5 2 48 73 5 98 3 9
24 49 3 2 74 5 99 5
25 2 50 3 75 2 100 3

4. GSP roots and congruences

This section gives an application of GSP roots to the solution of certain
congruences. We illustrate the solution procedure with concrete examples.

Example 2. Find all incongruent solutions of the congruence x4 ≡ 4 mod 7.
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For comparison, we give two solutions with one using a primitive root and
the other using a semi-primitive root.

Solution. (Using a primitive root 3 modulo 7)
Write x ≡ 3i, where 1 ≤ i ≤ φ(7) = 6. Since 4 ≡ 34 mod 7, we have

4i ≡ 4 mod 6 ⇒ 2i ≡ 2 mod 3 ⇒ i ≡ 1 mod 3.

Therefore, there are two incongruent solutions: x ≡ 3 or x ≡ 34 ≡ 4 mod 7.

Solution. (Using a GSP root 2 modulo 7)
Write x ≡ ±2i, where 1 ≤ i ≤ φ(7)/2 = 3. Since 4 ≡ 22 mod 7, we have

4i ≡ 2 mod 3 ⇒ i ≡ 2 mod 3.

So there are two incongruent solutions: x ≡ 22 ≡ 4 or x ≡ −22 ≡ 3 mod 7.

In Example 2, we do not see any advantage of using semi-primitive roots as
opposed to using primitive roots. However, it becomes beneficial in the case
where there are no primitive roots modulo n as shown in the next example.

Example 3. Find all incongruent solutions of the congruence x3 ≡ 20 mod 21.

Solution. (Using primitive roots 2 modulo 3 and 3 modulo 7)
Clearly,

x3 ≡ 20 mod 21 ⇐⇒
{ x3 ≡ 20 ≡ 2 mod 3

x3 ≡ 20 ≡ 6 mod 7.

For x3 ≡ 2 mod 3, write x ≡ 2i, where 1 ≤ i ≤ φ(3) = 2. We then have

3i ≡ 1 mod 2 ⇒ i ≡ 1 mod 2 ⇒ x ≡ 2 mod 3.

For x3 ≡ 6 mod 7, write x ≡ 3j, where 1 ≤ j ≤ φ(7) = 6. Since 6 ≡ 33 mod 7,

3j ≡ 3 mod 6 ⇒ j ≡ 1 mod 2 ⇒ x ≡ 31, 33, or 35 mod 7.

By solving the following three systems of congruences, we finally get three
incongruent solutions for x3 ≡ 20 mod 21 that are 5, 17, or 20.

x ≡ 2 mod 3 & x ≡ 3 mod 7 ⇒ x ≡ 17 mod 21
x ≡ 2 mod 3 & x ≡ 6 mod 7 ⇒ x ≡ 20 mod 21
x ≡ 2 mod 3 & x ≡ 5 mod 7 ⇒ x ≡ 5 mod 21.

The next solution uses a GSP root modulo 21. It gets rid of dealing with
several systems of congruences that we have seen in the previous solution.

Solution. (Using a GSP root 2 modulo 21)
Note that x3 ≡ 20 ≡ −1 mod 21. Since 2 is a good semi-primitive root (see
Table 1), any element x ∈ Z

∗

21 can be written in the form x ≡ ±2i mod 21, for
an integer i, and clearly there are no solutions to the congruence in the form
of 2i. Therefore, without loss of generality, we can write x ≡ −2i modulo 21,
where 1 ≤ i ≤ φ(21)/2 = 6 and have

3i ≡ 0 mod 6 ⇒ i ≡ 0 mod 2 ⇒ i = 2, 4, 6 ⇒ x ≡ −22, −24, −26 mod 21.
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So there are three incongruent solutions for x3 ≡ 20 mod 21 that are −22, −24,
or −26: equivalently, 5, 17, or 20.
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