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MULTIPLICATIVE FUNCTIONS COMMUTABLE

WITH BINARY QUADRATIC FORMS x2 ± xy + y2

Poo-Sung Park

Abstract. If a multiplicative function f is commutable with a quadratic

form x2 + xy + y2, i.e.,

f(x2 + xy + y2) = f(x)2 + f(x) f(y) + f(y)2,

then f is the identity function. In other hand, if f is commutable with
a quadratic form x2 − xy + y2, then f is one of three kinds of functions:

the identity function, the constant function, and an indicator function for

N \ pN with a prime p.

1. Introduction

In 2014, Bašić [1] classified arithmetic functions f satisfying

f(m2 + n2) = f(m)2 + f(n)2

for all positive integers m and n. His result was a variation of Chung’s work [2],
which was inspired from Claudia Spiro’s study about additive uniqueness sets
[6]. It is naturally generalized to studying arithmetic functions f satisfying

f
(
Q(x1, x2, . . . , xk)

)
= Q

(
f(x1), f(x2), . . . , f(xk)

)
for various quadratic forms Q. After Bašić’s work for Q(x, y) = x2 + y2, You
et al. [7] and Khanh [4] studied about Q(x, y) = x2 + ky2.

The author extended Bašić’s work to multiplicative functions commutable
with sums of more than 2 squares. That is, if a multiplicative function f
satisfies

f(x2
1 + x2

2 + · · ·+ x2
k) = f(x1)2 + f(x2)2 + · · ·+ f(xk)2

for k ≥ 3, then f is uniquely determined to be the identity function [5].
Let Q(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form

with a, b, c ∈ Z. The value b2−4ac is called discriminant of Q. The discriminant
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of the smallest absolute value is −3 for x2±xy+y2. So, it is a natural question
to ask which multiplicative function f satisfies the condition

f(x2 ± xy + y2) = f(x)2 ± f(x) f(y) + f(y)2.

In this article, we classify such multiplicative functions.

2. Results

Theorem 2.1. If a multiplicative function f : N→ C satisfies

f(x2 + xy + y2) = f(x)2 + f(x) f(y) + f(y)2,

then f is the identity function.

Proof. We will show that f(n) = n for 1 ≤ n ≤ 28 and use induction.
Note that f(1) = 1 and f(3) = 3 with x = y = 1. Since f is multiplicative,

the values of f at powers of primes determine f .
If n is not divisible by 3, then f(n2) = f(n)2 from

f(3n2) = f(3) f(n2) = 3f(n2)

= f(n2 + n · n + n2) = 3f(n)2.

Thus, f(4) = f(2)2, f(16) = f(4)2, and f(25) = f(5)2.
Since

f(7) = f(12 + 1 · 2 + 22) = 1 + f(2) + f(2)2,

f(13) = f(1)2 + f(1) f(3) + f(3)2 = 13,

f(21) = f(3) f(7) = 3f(7)

= f(1)2 + f(1) f(4) + f(4)2 = 1 + f(2)2 + f(2)4,

f(39) = f(3) f(13) = 39

= f(2)2 + f(2) f(5) + f(5)2,

f(91) = f(7) f(13) = 13 f(7)

= f(5)2 + f(5) f(6) + f(6)2 = f(5)2 + 3f(2)f(5) + 9f(2)2,

we can conclude that f(n) = n for n = 2, 4, 16, 5, 7, 13.
Since

f(84) = f(4) f(3) f(7) = 4 · 3 · 7 = 84

= f(2)2 + f(2) f(8) + f(8)2 = 4 + 2f(8) + f(8)2,

f(43) = f(1)2 + f(1) f(6) + f(6)2 = 43,

f(129) = f(3) f(43) = 3 · 43 = 129

= f(5)2 + f(5) f(8) + f(8)2 = 25 + 5f(8) + f(8)2,

we can find f(8) = 8.
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Since f(7) = 7 and

f
(
32 + 3 · (2 · 3) + (2 · 3)2

)
= f(3)2 + f(3) f(2 · 3) + f(2 · 3)2 = 7f(3)2

= f(7 · 32) = f(7) f(9),

we obtain that f(9) = 9.
The next prime is 11. But we need to find f(19) to determine f(11). Note

that f(19) = f(2)2 + f(2) f(3) + f(3)2 = 19. Now, since

f(133) = f(7) f(19) = 7 · 19 = 133

= f(1)2 + f(1) f(11) + f(11)2 = 1 + f(11) + f(11)2,

f(247) = f(13) f(19) = 13 · 19 = 247

= f(7)2 + f(7) f(11) + f(11)2 = 49 + 7f(11) + f(11)2,

we can find f(11) = 11.
Note that

f(399) = f(3) f(7) f(19) = 3 · 7 · 19 = 399

= f(5)2 + f(5) f(17) + f(17)2 = 25 + 5f(17) + f(17)2,

f(427) = f(3)2 + f(3) f(19) + f(19)2 = 427

= f(6)2 + f(6) f(17) + f(17)2 = 36 + 6f(17) + f(17)2.

Thus, f(17) = 17.
We have f(23) = 23 from

f(553) = f(7) f(79) = 7
(
f(3)2 + f(3) f(7) + f(7)2

)
= 7 · 79 = 553

= f(1)2 + f(1) f(23) + f(23)2 = 1 + f(23) + f(23)2,

f(579) = f(3) f(193) = 3
(
f(7)2 + f(7) f(9) + f(9)2

)
= 3 · 193 = 579

= f(2)2 + f(2) f(23) + f(23)2 = 4 + 2f(23) + f(23)2.

Note that

f(27) = f(3)2 + f(3) f(3) + f(3)2 = 27.

From the above results, it appears that f(n) = n for 1 ≤ n ≤ 28.
Now, consider f(n) for n ≥ 29. We divide two cases: n = 2k+1 and n = 2k.
Note that

(2k + 1)2 + (2k + 1)(k − 3) + (k − 3)2

= (2k − 3)2 + (2k − 3)(k + 2) + (k + 2)2

when k > 3. Thus, if we assume that f(m) = m for all m < n = 2k + 1, we
can write a functional equation

f(2k + 1)2 + f(2k + 1)(k − 3) + (k − 3)2

= (2k − 3)2 + (2k − 3)(k + 2) + (k + 2)2
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for f(2k + 1) by induction hypothesis and we obtain

f(2k + 1) = 2k + 1 or f(2k + 1) = −3k + 2.

In other hand, since

f
(
(2k + 1)2 + (2k + 1)(k − 10) + (k − 10)2

)
= f

(
(2k − 11)2 + (2k − 11)(k + 5) + (k + 5)2

)
when k > 10, we obtain

f(2k + 1) = 2k + 1 or f(2k + 1) = −3k + 9.

Therefore, the solution satisfying both equalities simultaneously is that f(n) =
f(2k + 1) = 2k + 1.

Similarly, from

(2k)2 + (2k)(k − 7) + (k − 7)2

= (2k − 8)2 + (2k − 8)(k + 3) + (k + 3)2

with k > 7 we obtain that

f(2k) = 2k or f(2k) = −3k + 7

if we assume that f(m) = m for m < n = 2k. Also, from

(2k)2 + (2k)(k − 14) + (k − 14)2

= (2k − 16)2 + (2k − 16)(k + 6) + (k + 6)2

with k > 14 we obtain that

f(2k) = 2k or f(2k) = −3k + 14.

Therefore, we conclude that f(n) = f(2k) = 2k. �

Theorem 2.2. A multiplicative function f : N→ C satisfies

f(x2 − xy + y2) = f(x)2 − f(x) f(y) + f(y)2

if and only if f is one of the following:

(1) the identity function f(n) = n;
(2) the constant function f(n) = 1;
(3) the function fp defined by

fp(n) =

{
0, p | n
1, p - n

for some prime p ≡ 2 (mod 3).

Proof. It is trivial that the identity function and the constant function satisfy
the functional equation. Let us consider the third case fp.

It is known that p ≡ 2 (mod 3) if and only if p cannot be represented as
x2 − xy + y2 [3]. Assume that n = x2 − xy + y2. Then n = (x + ωy)(x + ωy)
with ω = (−1 +

√
−3)/2 is the factorization in Z[ω] a PID. If n is divisible by
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p, both x and y are divisible by p, since p is an inert prime in Z[ω]. Thus, the
function fp works well.

Now let us prove “only if” part. Note that

f(n2) = f(n2 − n · n + n2) = f(n)2 − f(n) f(n) + f(n)2 = f(n)2.

We have that f(1) = 1. From the equalities

f(3) = f(1)2 − f(1) f(2) + f(2)2 = 1− f(2) + f(2)2,

f(7) = f(1)2 − f(1) f(3) + f(3)2 = 1− f(3) + f(3)2

= f(2)2 − f(2) f(3) + f(3)2 = f(2)2 − f(2) f(3) + f(3)2,

there are three cases:

f(1) = 1, f(2) = 0, f(3) = 1, f(4) = 0, f(6) = 0, f(7) = 1;
f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, f(6) = 1, f(7) = 1;
f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, f(6) = 6, f(7) = 7.

Since

f(1− n + n2) = f(12 − 1 · n + n2)

= 1− f(n) + f(n)2

and

f(1− n + n2) = f
(
(n− 1)2 − (n− 1)n + n2

)
= f(n− 1)2 − f(n− 1) f(n) + f(n)2,

we have that
f(n− 1)2 − f(n− 1) f(n) = 1− f(n)

or (
f(n− 1)− f(n) + 1

)(
f(n− 1)− 1

)
= 0.

Thus, it yields a condition

(∗) f(n− 1) = 1 or f(n) = f(n− 1) + 1.

So, if f(2) = 2, then f(3) = 3 and thus f(4) = 4, and so forth. We obtain the
identity function f(n) = n when f(2) = 2.

If f(2) = 0, then we have f(3) = f(5) = f(7) = 1 and f(4) = f(6) = 0.
From

f
(
22 − 2 · (2k) + (2k)2

)
= f(2)2 − f(2) f(2k) + f(2k)2 = f(2k)2

= f(4− 4k + 4k2) = f(4) f(1− k + k2) = 0

we deduce that f(2k) = 0 for k ≥ 1. Since f(2k + 1) = 1 by condition (∗),
f(2) = 0 yields a sequence alternating 1 and 0. That is, f = f2.

Now, the condition f(1) = f(2) = f(3) = f(4) = f(6) = f(7) = 1 remains.
If f(n) = a for some a ∈ C \ {1, 0,−1,−2, . . . }, then f(m) 6= 1 for all m > n.

But, since 1 = f(2) = f(22) = f(24) = · · · = f(22
N

) for sufficiently large N , it
is a contradiction. So, we can deduce that f(n) can have only integers ≤ 1.
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Suppose that s is the smallest integer such that f(s) = 0. If there exists no
such s, then f is a constant function f(n) = 1.

Since f is multiplicative and f(n2) = f(n)2, we can say that s = p2k−1 with
prime p and positive integer k. Note that

f
(
(p2k)2 − p2kp2k−1 + (p2k−1)2

)
= f(p2k)2 − f(p2k) f(p2k−1) + f(p2k−1)2 = f(p2k)2

= f
(
(p2k−1)2(p2 − p + 1)

)
= f(p2k−1)2f(p2 − p + 1) = 0.

Thus, f(p2k) = f(pk)2 = 0. By the minimality of s = p2k−1, we can deduce
that k = 1. That is, s is the prime p itself.

Then, we obtain f(p`) = 0 for any positive integer `, since

f
(
p2 − p(p`) + (p`)2

)
= f(p)2 − f(p) f(p`) + f(p`)2 = f(p`)2

= f
(
p2(1− ` + `2)

)
= f(p)2f(1− ` + `2) = 0.

That is, we can conclude that

f(n) = fp(n) = 0 when n is a multiple of p

and f(p` + 1) = 1 by condition (∗).
Now, let n be a positive integer with p - n. Then, there exists an integer m

such that nm ≡ 1 (mod p) and (n,m) = 1. Letting nm = p` + 1, we obtain

1 = f(p` + 1) = f(nm) = f(n) f(m).

Since f can have only integers ≤ 1, we can conclude that

(∗∗) f(n) = ±1 if p - n.

Now let us characterize the prime p. If p can be represented as x2−xy+y2,
then 0 = f(p) = f(x)2 − f(x) f(y) + f(y)2. But, this never happen since f(x)
and f(y) are ±1. Hence, p ≡ 2 (mod 3).

If f(n) = −1 for n ≤ p − 2, then f(n + 1) = 0 with n + 1 ≤ p − 1 by
(∗). But, this is impossible by (∗∗). Thus, if f(n) = −1 for n ≤ p − 1,
then n = p − 1. In this case, f(d) = −1 for a proper divisor d of p − 1
unless p is a Fermat prime. Thus, it is a contradiction. If p = 22

r

+ 1, then

−1 = f(p − 1) = f(22
r

) = f(22
r−1

)2, which is impossible for f(22
r−1

) = ±1.
So, we can conclude that

f(1) = f(2) = f(3) = · · · = f(p− 1) = 1 and f(p) = 0.

Similarly, suppose that f(n) = −1 for some n. If p(`− 1) + 1 ≤ n ≤ p`− 2
with ` ≥ 2, then f(n + 1) = 0 with p(` − 1) + 2 ≤ n + 1 ≤ p` − 1 by (∗).
But, this is a contradiction by (∗∗) since n+ 1 is not a multiple of p. Hence, if
f(n) = −1 with p(`− 1) + 1 ≤ n ≤ p`− 1, then n = p`− 1. Then, since n− 1
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and n are relatively prime and (n− 1)n = (p`− 2)(p`− 1) ≡ 2 6≡ −1 (mod p),
we can deduce a contradictory equality

f
(
(n− 1)n

)
= f(n− 1)f(n) = −1

= f
(
(p`− 2)(p`− 1)

)
= 1.

Therefore, we can conclude that f(n) = fp(n) = 1 when n is not divisible
by p. �
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