• Title/Summary/Keyword: Multi-body

Search Result 1,354, Processing Time 0.026 seconds

Dynamic analysis of horizontal linear vibrating motor using DAFUL program (DAFUL 프로그램을 이용한 슬림형 핸드폰 수평 선형 진동모터의 동적 해석)

  • Choi, Chang-Hwan;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5323-5329
    • /
    • 2013
  • Many companies have tried to develop the horizontally vibrating linear motor, for sliming the smart phone. Mathematical modeling and analysis is one of method to simulate the dynamic performance of the horizonatally vibrating linear motor. However, the horizontally vibrating linear motor vibrates in twisting mode because there are two kinds of force acting on the vibrating part. One is are the horizontal force by Lorentz force. The other is the vertical force by attraction force between magnet of vibrating part and bracket and the gravity force of vibrating part. However, those are very difficult to be included in mathematical modeling which generate the simulation errors. In this paper, we perform MFBD (multi flexible body dynamics) simulation using commercial dynamic analysis program "DAFUL". In our new model, the force effects those are neglected in mathematical model, are included. For the verification, the simulation results are compared with the experiment results with manufactured prototype.

Analysis on the Lateral Stiffness of Coil Spring for Railway Vehicle (철도차량용 코일스프링 횡강성 해석)

  • Hur, Hyun-Moo;Ahn, Da-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.84-90
    • /
    • 2018
  • In constructing the multi-body dynamics model to analyze the behavior of the railway vehicle, it is very important to understand the properties of the suspension elements that constitute the suspension system. Among them, coil springs, which are mainly used in primary and secondary suspension systems, clearly show the axial stiffness in the drawings, but the lateral properties of the coil springs are not specified clearly, making it difficult to construct a dynamic analysis model. Therefore, in this paper, the model for analyzing the lateral stiffness of the coil spring is examined. A finite element method was applied to analyze the lateral stiffness of the coil spring and numerical analysis was performed by applying the coil spring lateral stiffness analysis model proposed by Krettek and Sobczak. And the test to analyze the lateral stiffness of coil spring was conducted. As a result of comparing with the test results, it was found that the results obtained by applying the lateral stiffness analysis model of Krettek and Sobczak and correcting the correction coefficient are similar to those of the test results.

An Analysis about the Behavior of the Wiper Blade Including Incompressibility (비압축성을 고려한 와이퍼 블레이드의 거동 해석)

  • Chung, Won-Sun;Song, Hyun-Seok;Park, Tae-Won;Jung, Sung-Pil;Kim, Wook-Hyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases (이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석)

  • Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.32-40
    • /
    • 2002
  • The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, computational models for diatomic gases are developed. The rotational nonequilibrium effect is included by introducing excess normal stress associated with the bulk viscosity of the gas. The new models are applied to study the one-dimensional shock structure and the multi-dimensional rarefied hypersonic flow about a blunt body. The results indicate that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. An excellent agreement with experiment is observed for the inverse shock density thickness.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Effects of High Frequency Herbal Medication Administrations on the Renal Functions in Rats -Focusing on Sipjeondaebotang, Bojunikgitang, Ojeoksan and Yukmijihwangtang- (다용 한약처방 투여가 흰쥐의 신장기능에 미치는 영향 -십전대보탕, 보증익기탕, 오적산 및 육미지황탕을 중심으로-)

  • Shin, Gyu-Won;Lee, Sun-Dong;Park, Hae-Mo;Jeon, Sung-Jin;Byun, Jin-Seok
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.9 no.1
    • /
    • pp.119-133
    • /
    • 2005
  • Traditional herbal medicine is widely used among the Korean people, and other eastern Asian countries employ similar therapies as well. In recent years, due to increasing interest in herbal medicines, many researches have been made on the toxicity and side effects of herbal medications. Through private and public media, there have been many opinions suggesting taking herbal medicines is very harmful, especially on the liver and kidney functions. This assertion has been mainly presented by the doctors that practice western medicine, But this assertion is never based on adequate knowledge of herbal medicine. This study aims to provide the evidences that taking herbal medicines is safe on the renal functions. Four frequently used herbal medications(Sipjeondaebotang, Bojungigitang, Ojeoksan, and Yukmijihwangtang) were used to test the toxicity of herbal medicine oh the lab animal model(SD-Rat). There is no significant difference in body weight and kidney weight after herbal medication for 1 month. In all experimental groups, no abnormal findings were observed in histological study, and lab renal function index(BUN, creatinine, uric acid). These results say that four herbal multi-used-medicines, when medicated, is safe from the renal toxicity in lab animal model.

  • PDF

Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU (NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석)

  • Park, Ji-Soo;Yoon, Joon-Shik;Choi, Jin-Hwan;Rhim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.465-474
    • /
    • 2012
  • In this study, a dynamic simulation model that considers many spherical particles and multibody dynamics (MBD) entities is developed. Plenteous spherical particles are solved using the Discrete Element Method (DEM) technique and simulated on a GPU board in a PC. A fast algorithm is used to calculate the Hertzian contact forces between many spherical particles, and NVIDIA CUDA is used to increase the calculation speed. The explicit integration method is applied to solve the many spheres. MBD entities are simulated by recursive formulation. Constraints are reduced by recursive formulation, and the implicit generalized alpha method is applied to solve the dynamic model. A new algorithm is developed to simulate the DEM and MBD models simultaneously. As a numerical example, a truck car model and gear model are developed. The results show that the proposed algorithm using a general-purpose GPU in a PC has many advantages.

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

A Study on the Electrical Difference for The Limbs and Thoracic Impedance using Real-Time Bio-impedance Measurement System (실시간 생체임피던스 측정 시스템을 이용한 사지와 흉부 임피던스에 대한 전기적인 차이 연구)

  • Cho, Young-Chang;Kim, Min-Soo;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2013
  • Bio-impedance measurement system(BMS) is non-invasive and easy to implement a measurement method that allows determining the water content of a patient. The measurement conditions, the hardware specifications and the configurations of BMS devices must be well chosen in order to get correct and reproducible results. BMS was then conducted for the limbs and the thoracic using a lock-in amplifier and LabView control system with a frequency range of 1kHz-100kHz. From both the measurement data and the simulation results, we verified that the parameters in the proposed equivalent model and the trend of impedance variation according to the multi-frequency of applied current source are similar to those of human body. We believe that the real-time BMS developed in this study is highly reliable and applicable to the research on the clinical characteristics of the human being's impedance.