DOI QR코드

DOI QR Code

Numerical Analysis of Rarefied Hypersonic Flows Using Generalized Hydrodynamic Models for Diatomic Gases

이원자 기체 일반유체역학 모델을 이용한 극초음속 희박 유동장 해석

  • 명노신 (경상대학교 기계항공공학부 및 항공기부품기술연구센터(ReCAPT))
  • Published : 2002.08.01

Abstract

The study of nonlinear gas transport in rarefied condition or associated with the microscale length of the geometry has emerged as an interesting topic in recent years. Along with the DSMC method, several fluid dynamic models that come under the general category of the moment method or the Chapman-Enskog method have been used for this type of problem. In the present study, on the basis of Eu's generalized hydrodynamics, computational models for diatomic gases are developed. The rotational nonequilibrium effect is included by introducing excess normal stress associated with the bulk viscosity of the gas. The new models are applied to study the one-dimensional shock structure and the multi-dimensional rarefied hypersonic flow about a blunt body. The results indicate that the bulk viscosity plays a considerable role in fundamental flow problems such as the shock structure and shear flow. An excellent agreement with experiment is observed for the inverse shock density thickness.

희박상태나 극소장치에 관련된 기체운동을 해석하는 문제가 최근 중요한 연구주제로 부각되고 있다. 잘 알려진 DSMC와 더불어 모우멘트 기법, Chapman-Enskog 기법으로 분류되는 고차 비평형 유동 해석모델들이 이 문제에 적용되어 왔다. 본 연구에서는 Eu의 일반유체역학을 근간으로 이원자 기체에 관한 고차 해석모델을 개발하고자 한다. 회전 비평형 효과는 기체의 용적 점성계수에 관한 초과 수직응력을 고려하여 감안하였다. 개발된 계산모델을 일차원 충격파 내부구조와 단순 형상 외부의 희박 극초음속 유동장 해석에 적용하였다. 충격파 내부구조 및 전단유동 해석을 통해 회전 비평형에 의한 용적 점성계수 효과가 중요함을 확인하였다. 충격파 내부구조에 관한 이론적 예측이 실험과 잘 일치함도 확인하였다.

Keywords

References

  1. Ho, C. M. and Tai, Y. C, "Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows," Annual Review in Fluid Mechanics, Vol. 30, pp.11-22, 1999.
  2. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, England, 1994.
  3. 박재현, 강신재, 김정수, 백승욱, 유명종, "인공위성 추력기 플롬의 DSMC 해석," 한국항공우주학회지, 29권 8호, pp. 111-118, 2001.
  4. White, F. M., Viscous Fluid Flow, McGraw Hill, 1974.
  5. Eu, B. C, Kinetic Theory and Irreversible Thermodynamics, John Wiley & Sons, New York, 1992.
  6. Eu, B. C. and Ohr, Y. G., "Generalized Hydrodynamics, Bulk Viscosity, and Sound Wave Absorption and Dispersion in Dilute Rigid Molecular Gases," Physics of Fluids, Vol. 13, No. 3, pp. 744-753, 2001. https://doi.org/10.1063/1.1343908
  7. 명노신, "열역학 충족 비평형 유체역학 모델을 이용한 희박기체 및 MEMS 유동장 해석," 한국항공우주학회지, 28권 4호, pp. 35-47, 2000.
  8. Chae, D., Kim, C, Rho, O. H., and Myong, R. S., "Analysis of Rarefied Nozzle Flow by Generalized Hydrodynamic Equations," AIAA Paper 2001-0894.
  9. Myong, R. S., "A Computational Method for Eu's Generalized Hydrodynamic Equations of Rarefied and Microscale Gasdynamics," Journal of Computational Physics, Vol. 168, pp. 47-72, 2001. https://doi.org/10.1006/jcph.2000.6678
  10. Myong, R. S., "Velocity-Slip Effect in Low-Speed Microscale Gas Flows," AIAA Paper 2001-3076.
  11. Langmuir, I., Surface Chemistry, Chemical Reviews, Vol. 13, p. 147, 1933. https://doi.org/10.1021/cr60045a001
  12. Bhattacharya, D. K and Eu, B. C, "Nonlinear Transport Processes and Fluid Dynamics: Effects of Thernioviscous Coupling and Nonlinear Transport Coefficients on Plane Couette Flow of Lennard-Jones Fluids," Physical Riview A, Vol. 35, No. 2, p. 821, 1987. https://doi.org/10.1103/PhysRevA.35.821
  13. Lumpkin III, F. E., Chapman, D. R., and Park, C, "A New Rotational Relaxation Model for Use in Hypersonic Computational Fluid Dynamics," AIAA Paper 1989-1737.
  14. Camac, M., "Argon Shock Structure," Proceedings of the Fourth International Symposium on Rarefied Gas Dynamics, Edited by J. H. De Leeuw, Academic Press, New York, 1965.
  15. Robben, F. and Talbot, L., "Measurements of Shock Wave Thickness by the Electron Beam Fluorescence Method," Physics of Fluids, Vol. 9, pp. 633-643, 1966. https://doi.org/10.1063/1.1761728
  16. Alsmyer, H., "Density Profiles in Argon and Nitrogen Shock Waves Measured by the Absorption of an Electron Beam," Journal of Fluid Mechanics, Vol. 74, pp. 497-513, 1976. https://doi.org/10.1017/S0022112076001912
  17. Chapman, S. and Cowling, T. G., The Mathematical Tlieory of Nonuniform Gases, 3rd ed., Cambridge University Press, 1990.