• 제목/요약/키워드: Mittag-Leffler

검색결과 63건 처리시간 0.024초

CERTAIN FORMULAS INVOLVING A MULTI-INDEX MITTAG-LEFFLER FUNCTION

  • Bansal, Manish Kumar;Harjule, P.;Choi, Junesang;Mubeen, Shahid;Kumar, Devendra
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.23-30
    • /
    • 2019
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function, a number of its extensions have been investigated due mainly to their applications in a variety of research subjects. Shukla and Prajapati presented a lot of formulas involving a generalized Mittag-Leffler function in a systematic manner. Motivated mainly by Shukla and Prajapati's work, we aim to investigate a generalized multi-index Mittag-Leffler function and, among possible numerous formulas, choose to present several formulas involving this generalized multi-index Mittag-Leffler function such as a recurrence formula, derivative formula, three integral transformation formulas. The results presented here, being general, are pointed out to reduce to yield relatively simple formulas including known ones.

$\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULES AND GLOBAL DIMENSION RELATIVE TO $\mathcal{F}_{\mathcal{S}}$-MITTAG-LEFFLER MODULES

  • Chen, Mingzhao;Wang, Fanggui
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.961-976
    • /
    • 2019
  • Let R be any commutative ring and S be any multiplicative closed set. We introduce an S-version of $\mathcal{F}$-Mittag-Leffler modules, called $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, and define the projective dimension with respect to these modules. We give some characterizations of $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, investigate the relationships between $\mathcal{F}$-Mittag-Leffler modules and $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler modules, and use these relations to describe noetherian rings and coherent rings, such as R is noetherian if and only if $R_S$ is noetherian and every $\mathcal{F}_{\mathcal{S}}$-Mittag-Leffler module is $\mathcal{F}$-Mittag-Leffler. Besides, we also investigate the $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension of R, and prove that $R_S$ is noetherian if and only if its $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension is zero; $R_S$ is coherent if and only if its $\mathcal{M}^{\mathcal{F}_{\mathcal{S}}$-global dimension is at most one.

MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS

  • Eloe, Paul;Jonnalagadda, Jaganmohan
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.977-992
    • /
    • 2019
  • Mittag-Leffler stability of nonlinear fractional nabla difference systems is defined and the Lyapunov direct method is employed to provide sufficient conditions for Mittag-Leffler stability of, and in some cases the stability of, the zero solution of a system nonlinear fractional nabla difference equations. For this purpose, we obtain several properties of the exponential and one parameter Mittag-Leffler functions of fractional nabla calculus. Two examples are provided to illustrate the applicability of established results.

A NEW EXTENSION OF THE MITTAG-LEFFLER FUNCTION

  • Arshad, Muhammad;Choi, Junesang;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.549-560
    • /
    • 2018
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function in 1903, due to its usefulness and diverse applications, a variety and large number of its extensions (and generalizations) and variants have been presented and investigated. In this sequel, we aim to introduce a new extension of the Mittag-Leffler function by using a known extended beta function. Then we investigate ceratin useful properties and formulas associated with the extended Mittag-Leffler function such as integral representation, Mellin transform, recurrence relation, and derivative formulas. We also introduce an extended Riemann-Liouville fractional derivative to present a fractional derivative formula for a known extended Mittag-Leffler function, the result of which is expressed in terms of the new extended Mittag-Leffler functions.

NEW SEVEN-PARAMETER MITTAG-LEFFLER FUNCTION WITH CERTAIN ANALYTIC PROPERTIES

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.99-111
    • /
    • 2024
  • In this paper, a new seven-parameter Mittag-Leffler function of a single complex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.

Some Generating Relations of Extended Mittag-Leffler Functions

  • Khan, Nabiullah;Ghayasuddin, Mohd;Shadab, Mohd
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.325-333
    • /
    • 2019
  • Motivated by the results on generating functions investigated by H. Exton and many other authors, we derive certain (presumably) new generating functions for generalized Mittag-Leffler-type functions. Specifically, we introduce a new class of generating relations (which are partly bilateral and partly unilateral) involving the generalized Mittag-Leffler function. Also we present some special cases of our main result.

SEVEN-PARAMETER MITTAG-LEFFLER OPERATOR WITH SECOND-ORDER DIFFERENTIAL SUBORDINATION RESULTS

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.903-917
    • /
    • 2023
  • This paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.

SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

  • KHAN, N.U.;USMAN, T.;GHAYASUDDIN, M.
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.249-255
    • /
    • 2016
  • The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.