• Title/Summary/Keyword: Mission Success Probability

Search Result 9, Processing Time 0.019 seconds

Mission Effectiveness Model Applicable For Military System's Evaluation and Test Design

  • Lie, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1977
  • Mission effectiveness, which is the probability of successfully completing the assigned mission, is introduced as an appropriate measure of effectiveness for a military system. The model of mission effectiveness is developed for a system which is required to carry out various types of a mission. Each mission type is characterized by the maximum allowable time that determines the success of a given mission type. A given type of a mission is successful if and only if (i) the system is available at the start of a mission and (ii) the system completes its mission within the maximum allowable duration of time that this given mission type specifies without any failure during this period. Both analytic and simulation approaches are employed. Difficulties involved in the anayticl approach are discussed. The model is proposed as a useful tool for consistent system evaluation and optimum test design.

  • PDF

A Study on the Estimation of Launch Success Probability for Space Launch Vehicles Using Bayesian Method (베이지안 기법을 적용한 우주발사체의 발사 성공률 추정에 관한 연구)

  • Yoo, Seung-Woo;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.537-546
    • /
    • 2020
  • The reliability used as a performance indicator during the development of space launch vehicle should be validated by the launch success probability, and the launch data need to be fed back for reliability management. In this paper, the launch data of space launch vehicles around the world were investigated and statistically analyzed for the success probabilities according to the launch vehicle models and maturity. The Bayesian estimation of launch success probability was reviewed and analyzed by comparing the estimated success probabilities using several prior distributions and the statistical success probability. We presented the method of generating prior distribution function and considerations for Bayesian estimation.

A Development of Docking Phase Analysis Tool for Nanosatellite

  • Jeong, Miri;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.187-197
    • /
    • 2020
  • In order to avoid the high cost and high risk of demonstration mission of rendezvous-docking technology, missions using nanosatellites have recently been increasing. However, there are few successful mission cases due to many limitations of nanosatellites like small size, power limitation, and limited performances of sensor, thruster, and controller. To improve the probability of rendezvous-docking mission success using nanosatellite, a rendezvous-docking phase analysis tool for nanosatellites is developed. The tool serves to analyze the relative position and attitude control of the chaser satellite at the docking phase. In this tool, the Model Predictive Controller (MPC) is implemented as a controller, and Extended Kalman Filter (EKF) is adopted as a filter for noise filtering. To verify the performance and effectiveness of the developed tool for nanosatellites, simulation study was conducted. Consequently, we confirmed that this tool can be used for the analysis of relative position and attitude control for nanosatellites in the rendezvous-docking phase.

Search for Ground Moving Targets Using Dynamic Probability Maps (동적 확률지도를 이용한 지상 이동표적 탐색)

  • Kim, Eun-Kyu;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.11-21
    • /
    • 2015
  • In order to achieve success in ground operations, searching for moving targets is one of critical factors. Usually, the system of searching for adversary ground moving targets has complex properties which includes target's moving characteristics, camouflage level, terrain, weather, available search time window, distance between target and searcher, moving speed, target's tactics, etc. The purpose of this paper is to present a practical quantitative method for effectively searching for infiltrated moving targets considering aforementioned complex properties. Based upon search theories, this paper consists of two parts. One is infiltration route analysis, through terrain and mobility analysis. The other is building dynamic probability maps through Monte Carlo simulation to determine the prioritized searching area for moving targets. This study primarily considers ground moving targets' moving pattern. These move by foot and because terrain has a great effect on the target's movement, they generally travel along a constrained path. With the ideas based on the terrain's effect, this study deliberately performed terrain and mobility analysis and built a constrained path. In addition, dynamic probability maps taking terrain condition and a target's moving speed into consideration is proposed. This analysis is considerably distinct from other existing studies using supposed transition probability for searching moving targets. A case study is performed to validate the effectiveness and usefulness of our methodology. Also, this study suggests that the proposed approach can be used for searching for infiltrated ground moving target within critical time window. The proposed method could be used not only to assist a searcher's mission planning, but also to support the tactical commander's timely decision making ability and ensure the operations' success.

Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations (다수의 위협과 복수의 목적지가 존재하는 임무에서 복수 무인기의 생존율 극대화를 위한 최적 경로 계획 및 분석)

  • Jeong, Seongsik;Jang, Dae-Sung;Park, Hyunjin;Seong, Taehyun;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.488-496
    • /
    • 2015
  • This paper proposes a framework to determine the routes of multiple unmanned aerial vehicles (UAVs) to conduct multiple tasks in different locations considering the survivability of the vehicles. The routing problem can be formulated as the vehicle routing problem (VRP) with different cost matrices representing the trade-off between the safety of the UAVs and the mission completion time. The threat level for a UAV at a certain location was modeled considering the detection probability and the shoot-down probability. The minimal-cost path connecting two locations considering the threat level and the flight distance was obtained using the Dijkstra algorithm in hexagonal cells. A case study for determining the optimal routes for a persistent multi-UAVs surveillance and reconnaissance missions given multiple enemy bases was conducted and its results were discussed.

Development of Indoor Navigation Control System for Swarm Multiple AR.Drone's (실내 환경에서의 AR.Drone 군집 비행 시스템 개발)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck;Rew, DongYoung;Gong, HyunCheol
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • Recently, small quadcopters have been widely used in various areas ranging from military to entertainment applications because interest in the quadcopter increases. Especially, the research on swarm flight which control quadcopters simultaneously without any collision can increase success probability of a important mission. In addition the swarm flight can be applied for demonstrating choreographed aerial maneuvers such as dancing and playing musical instruments. In this paper, we introduce multiple AR.Drone control system based on motion capture for indoor environment in which quadcopters can recognize current position each other and perform scenario based mission.

A Study on the Conceptual Design of an Unmanned Surface Vehicle(USV) for the Korean Navy (한국형 무인 경비정(USV)의 개념설계에 관한 연구)

  • Boo Sung Youn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.59-68
    • /
    • 2004
  • Unmanned surface vehicles(USVs) have been developed for special operations in foreign navies. These will be employed to conduct critical missions including inspection, coast guard, ISR, fire protection, precision strike, mine interception warfare and antisubmarine warfare. It is also known the USVs will be deployed at the front line of the network-centric warfare to replace the manned naval operations. The unmanned operation can, thus, minimize unnecessary risk to personnel and enhance the success probability for the imposed mission. In this research, the USVs which are under operation and development in foreign navies are investigated. Based on this, an USV with $7\~10m$ of length and 10ton of weight for the Korean Navy which can be deployed near the Northern Limit Line(NLL), is proposed.

A Process of the Technical Performance Management for A Space Launch Vehicle R&D Project (우주발사체 개발사업을 위한 기술성능관리 프로세스)

  • Yoo, Il Sang;Cho, Dong Hyun;Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • To enhance success probability of a system development project, its overall risk level should be minimized through systematically managing schedules, costs, and technical performances. However, Attempts to manage technical performance compared to numerous efforts to control costs and schedules in such projects are deficient. Particularly, a space launch vehicle, a large complex system, development project is much less likely to meet its technical performance objectives due to its technological difficulty, along with schedule delay and cost overrun. The technical performance management (TPM) is a method for tracking and managing technical progress in order to achieve technical performance targets within schedule and budget. In this paper, we investigate applications of the TPM in several space launch vehicle development projects. Then we propose and validate the TPM process to achieve a successful mission in such projects.

Development of Low Altitude Terrain Following System based on TERain PROfile Matching (TERPROM 기반의 저고도 지형추적시스템 개발)

  • Kim, Chong-sup;Cho, In-je;Lee, Dong-Kyu;Kang, Im-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.888-897
    • /
    • 2015
  • A flight capability to take a terrain following flight near the ground is required to reduce the probability that a fighter aircraft can be detected by foe's radar fence in the battlefield. The success rate for mission flight has increased by adopting TFS (Terrain Following System) to enable the modern advanced fighter to fly safely near the ground at the low altitude. This system has applied to the state-of-the-art fighter and bomber, such as B-1, F-111, F-16 E/F and F-15, since the research begins from 1960's. In this paper, the terrain following system and GCAS (Ground Collision Avoidance System) was developed, based on a digital database with UTAS's TERPRROM (TERrain PROfile Matching) equipment. This system calculates the relative location of the aircraft in the terrain database by using the aircraft status information provided by the radar altimeter and the INS (Inertial Navigation System), based on the digital terrain database loaded previously in the DTC (Data Transfer Cartridge), and figures out terrain features around. And, the system is a manual terrain following system which makes a steering command cue refer to flight path marker, on the HUD (Head Up Display), for vertical acceleration essential for terrain following flight and enables a pilot to follow it. The cue is based on the recognized terrain features and TCH (Target Clearance Height) set by a pilot in advance. The developed terrain following system was verified in the real-time pilot evaluation in FA-50 HQS (Handling Quality Simulator) environment.