• Title/Summary/Keyword: Mineralogical Properties

Search Result 291, Processing Time 0.031 seconds

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

Characterization of Arsenic Adsorption onto Hematite (적철석(Hematite) 표면의 비소 흡착 특성)

  • Kim, Seong Hee;Lee, Woo Chun;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.197-210
    • /
    • 2012
  • Hematite has been known to be the most stable form of various iron (oxyhydr)oxides in the surface environments. In this study, its properties as an adsorbent were examined and also adsorption of arsenic onto hematite was characterized as well. The specific surface area of hematite synthesized in our laboratory appeared to be $31.8g\;m^2/g$ and its point of zero salt effect, (PZSE) determined by potentiometric titration was observed 8.5. These features of hematite may contribute to high capacity of arsenic adsorption. From several adsorption experiments undertaken at the identical solution concentrations over pH 2~12, the adsorption of As(III) (arsenite) was greater than that of As(V) (arsenate). As of pH-dependent adsorption patterns, in addition, arsenite adsorption gradually increased until pH 9.2 and then sharply decreased with pH, whereas adsorption of arsenate was greatest at pH 2.0 and steadily decreased with the increasing pH from 2 to 12. The characteristics of these pH-dependent adsorption patterns might be caused by combined effects of the variation in the chemical speciation of arsenic and the surface charge of hematite. The experimental results on adsorption kinetics show that adsorption of both arsenic species onto hematite approached equilibrium within 20 h. Additionally, the pseudo-second-order model was evaluated to be the best fit for the adsorption kinetics of arsenic onto hematite, regardless of arsenic species, and the rate constant of As(V) adsorption was investigated to be larger than that of As(III).

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR (비정질 소듐 보레이트와 붕소를 함유한 다성분계 규산염 용융체의 붕소의 함량에 따른 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, A Chim;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases (전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석)

  • Khim, Hoon;Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.59-70
    • /
    • 2017
  • $SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

Synthesis of Fe­Garnet for tile Immobilization of High Level Radioactive Waste (고준위 방사성폐기물의 고정화를 위한 Fe­석류석 합성 연구)

  • ;;;Yudintsev, S. V.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.307-320
    • /
    • 2003
  • Garnet has been considered as a possible matrix for the immobilization of radioactive actinides. It is expected that Fe­based garnet be able to have the high substitution ability of actinide elements because ionic radius of Fe in tetrahedral site is larger than that of Si of Si­based garnet. Accordingly, we synthesized Fe­garnet with the batch composition of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$ and studied their phase relations and properties. Mixed samples were fabricated in pellet forms under the pressure of 400 kg/$\textrm{cm}^2$ and were sintered in the temperature range of 1100∼140$0^{\circ}C$ in atmospheric conditions. Phase identification and chemical composition of synthesized samples were analyzed by XRD and SEM/EDS. In results, where the compounds were sintered at 130$0^{\circ}C$, we optimally obtained Fe­garnets as the main phase, even though some minor phases like perovskite were included. The compositions of Fe­garnets synthesized from the batch compositions of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$, are $Ca_{2.5­3.2}$C $e_{0.3­0.7}$Z $r_{1.8­2.8}$F $e_{1.9­3.2}$ $O_{12}$ and $Ca_{2.2­2.5}$C $e_{0.8­1.0}$Z $r_{1.3­1.6}$ F $e_{0.4­.07}$ F $e_{3­3.2}$ $O_{12}$, respectively. Ca contents were exceeded and Ce contents were exceeded or depleted in 8­coodinated site, comparing to the initial batch composition. These results were caused by the compensation of the difference of ionic radius between Ca and Ce.

Hydrothermal Synthesis of Kaolinite and Change of Its Properties (캐올리나이트의 수열합성 및 특성변화)

  • Jang, Young-Nam;Ryu, Gyoung-Won;Chae, Soo-Chun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Kaolinite was synthesized from amorphous $SiO_2$ and $Al(OH)_3{\cdot}xH_{2}O$ as starting materials by hydrothermal reaction conducted at $250^{\circ}C$ and $30\;kg/cm^2$. The acidity of the solution was adjusted at pH 2. The synthesized kaolinite was characterized by XRD, IR, NMR, FE-SEM, TEM and EDS to clarify the formational process according to the reaction time from 2 to 36 hours. X-ray diffraction patterns showed after 2 h of reaction time, the starting material amorphous $Al(OH)_3{\cdot}xH_{2}O$ transformed to boehmite (AlOOH) and after the reaction time 5 h, the peaks of boehmite were observed to be absent thereby indicating the crystal structure is partially destructed. Kaolinite formation was identified in the product obtained after 10 h of reaction and the peak intensity of kaolinite increased further with reaction time. The results of TGA and DTA revealed that the principal feature of kaolinite trace are well resolved. TGA results showed 13 wt% amount of weight loss and DTA analysis showed that exothermic peak of boehmite observed at $258^{\circ}C$ was decreased gradually and after 10 h of reaction time, it was disappeared. After 5 h of the reaction time, the exothermicpeak of transformation to spinel phase was observed and the peak intensiy increased with reaction time. The results of FT-IR suggested a highly ordered kaolinite was obtained after 36 hours of reaction. It was identified by the characteristic hydroxide group bands positioned at 3,696, 3670, 3653 and $3620\;cm^{-1}$. The development of the hydroxyl stretching between 3696 and $3620\;cm^{-1}$, depends on the degree of order and crystalline perfection. TEM results showed that after 15 h reaction time, curved platy kaolinite was observed as growing of (001) plane and after 36 h, the morphology of synthetic kaolinite exhibited platy crystal with partial polygonal outlines.

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.

Pressure-load Calibration of Multi-anvil Press and the Thermal Gradient within the Sample Chamber (멀티 앤빌 프레스의 압력-부하 보정 작업과 시료 내의 온도구배 연구)

  • Kim, Eun Jeong;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.161-172
    • /
    • 2018
  • Multi-anvil press (MAP) is one of the high pressure apparatuses and often generates the pressure-conditions ranging from 5 to 25 GPa and temperature-conditions up to $2,300^{\circ}C$. The MAP is, therefore, suitable to explore the pressure-induced structural changes in diverse earth materials from Earth's mantle and the bottom of the mantle transition zone (~660 km). In this study, we present the experimental results for pressure-load calibration of the 1,100-ton multi-anvil press equipped in the authors' laboratory. The pressure-load calibration experiments were performed for the 14/8 step, 14/8 G2, 14/8 HT, and 18/12 assembly sets. The high pressure experiments using ${\alpha}$-quartz, wollastonitestructure of $CaGeO_3$, and forsterite as starting materials were analyzed by powder X-ray diffraction spectroscopy. The phase transition of each mineral indicates the specific pressure that is loaded to a sample at $1,200^{\circ}C$: a transition of ${\alpha}$-quartz to coesite at 3.1 GPa, that of garnet-structure of $CaGeO_3$ to perovskite-structure at 5.9 GPa, that of coesite to stishovite at 9.2 GPa, and that of forsterite to wadsleyite at 13.6 GPa. While the estimated pressure-load calibration curve is generally consistent with those obtained in other laboratories, the deviation up to 50 tons is observed at high pressure above 10 GPa. This is partly because of the loss of oil pressure at high pressure resulting from the differences in a sample chamber, and the frictional force between pressure medium and second anvil. We also report the ${\sim}200^{\circ}C/mm$ of thermal gradient in the vertical direction of the sample chamber of 14/8 HT assembly. The pressure-load calibration curve and the observed thermal gradient within the sample chamber can be applied to explain the structural changes and the relevant macroscopic properties of diverse crystalline and amorphous earth materials in the mantle.

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.