Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations

지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구

  • Lee, Bum-Han (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 이범한 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2010.12.01
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

지구물질로 이루어진 공극 구조와 이를 채우고 있는 유체의 상호작용에 대한 이해는 지표 및 지구내부의 다양한 지질학적 현상의 설명에 필수적이다. 본 연구에서는 지구물질과 유체의 상호작용을 보다 잘 이해하기 위해, 비표면적과 공극률이 다공성 매질의 공극 구조를 설명하는 매개변수에 미치는 영향을 살펴보고자 하였다. 이를 위해 입자의 지름과 공극률을 다양하게 하여 동일한 크기의 구형의 입자로 이루어진 다공성 매질에 대한 삼차원 공극 구조를 무작위 패킹 시뮬레이션으로 얻었고, 이에 대해 구성 엔트로피와 삼차원 상자집계 프랙탈 차원 분석을 하였다 구성 엔트로피 분석 결과, 엔트로피 길이는 비표면적이 2.4에서 $8.3mm^2/mm^3$으로 증가할 때 0.8에서 0.2 mm로 감소하고, 최대 구성 엔트로피는 공극률이 0.33 에서 0.46으로 증가할수록 0.94에서 0.99로 증가하는 뚜렷한 경향을 보인다. 구성 엔트로피와 공극률의 관계로부터 구성 엔트로피가 맨틀 용융체의 탄성과 점성도를 설명하는 변수로 사용될 수 있음을 제시한다. 삼차원 상자집계 프랙탈 차원은 비표면적이 같을 때 공극률이 증가함에 따라 증가하고, 비표면적이 2.4에서 $8.3mm^2/mm^3$으로 증가할 때 2.65에서 2.98로 증가한다. 이러한 삼차원 상자집계 프랙탈 차원과 비표면적, 공극률의 관계로부터 삼차원 상자집계 프랙탈 차원이 지진파 감쇠와 맨틀용융체를 포함한 다양한 지질매체의 구조와 무질서도를 설명하는 변수로 사용될 수 있음을 제시한다.

Keywords

References

  1. 이범한, 이성근 (2007) 캐올리나이트 규산염 층과 벤질 알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향. 한국광물학회지, 20, 313-325.
  2. 이범한, 이성근 (2009) 지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구. 한국광물학회지, 22, 313-324.
  3. Andraud, C., Beghdadi, A., Haslund, E., Hilfer, R., Lafait, J., and Virgin, B. (1997) Local entropy characterization of correlated random microstructures. Physica A, 235, 307-318. https://doi.org/10.1016/S0378-4371(96)00354-8
  4. Andraud, C., Beghdadi, A.,and Lafait, J. (1994) Entropic analysis of random morphologies. Physica A, 207, 208-212. https://doi.org/10.1016/0378-4371(94)90374-3
  5. Bear, J. (1972) Dynamics of Fluids in Porous Media. New York, American Elsevier, 764p.
  6. Biot, M.A. (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid, 1. Low- frequency range. J. Acoust. Soc. Am., 28, 168- 178. https://doi.org/10.1121/1.1908239
  7. Blumich, B. (2000) NMR Imaging of Materials. Oxford, Clarendon Press, 541p.
  8. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001) Scaling of fracture systems in geological media. Rev. Geophys., 39, 347-383. https://doi.org/10.1029/1999RG000074
  9. Callaghan, P.T. (1991) Principles of Nuclear Magnetic Resonance Microscopy. Oxford, Clarendon Press, 492p.
  10. Foresman, J.B. and Frisch, $\AE$. (1996) Exploring Chemistry with Electronic Structure Methods. Pittsburgh, PA, Gaussian, Inc., 302p.
  11. Jia, X. and Williams, R.A. (2001) A packing algorithm for particles of arbitrary shapes. Powder Technol., 120, 175-186. https://doi.org/10.1016/S0032-5910(01)00268-6
  12. Lee, B.H. and Lee, S.K. (2009) Effect of lattice topology on the adsorption of benzyl alcohol on kaolinite surfaces: Quantum chemical calculations of geometry optimization, binding energy, and NMR chemical shielding. Am. Mineral., 94, 1392-1404. https://doi.org/10.2138/am.2009.3198
  13. Lee, B.H. and Lee, S.K. (in preparation) Probing of water distribution in porous model sands with immiscible fluids: Nuclear magnetic resonance micro-imaging study.
  14. Lee, B.H., Cho, J.H., and Lee, S.K. (in preparation) High resolution NMR micro-imaging of fluids in porous media.
  15. Lee, B.H. and Lee, S.K. (submitted) Effect of specific surface area and porosity on cube counting fractal dimension, lacunarity, and configurational entropy of pore structure of model sands: random packing simulations and NMR micro-imaging. J. Geophys. Res.
  16. Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochim. Cosmochim. Acta, 69, 3695-3710. https://doi.org/10.1016/j.gca.2005.03.011
  17. Lee, S.K., Kim, H.N., Lee, B.H., Kim, H.I.,and Kim, E. J. (2010) Nature of chemical and topological disorder in borogermanate glasses: insights from B-11 and O-17 solid-state NMR and quantum chemical calculations. J. Phys. Chem. B, 114, 412-420. https://doi.org/10.1021/jp9093113
  18. Lee, S.K. and Lee, B.H. (2006) Atomistic origin of germanate anomaly in $GeO_{2}$ and Na-germanate glasses: Insights from two-dimensional ${^{17}O}$ NMR and quantum chemical calculations. J. Phys. Chem. B, 110, 16408- 16412. https://doi.org/10.1021/jp063847b
  19. Lee, S.K. Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J.F., Li, B.S., Fukui, H., Lee, B.H., Kim, H.N., and Yoo, C.S. (2008) X-ray Raman scattering study of $MgSiO_{3}$ glass at high pressure: Implication for triclustered $MgSiO_{3}$melt in Earth's mantle. Proc. Natl. Acad. Sci. USA, 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105
  20. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. Am. Mineral., 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  21. Muller, T.M., Toms-Stewart, J., and Wenzlau, F. (2008) Velocity-saturation relation for partially saturated rocks with fractal pore fluid distribution. Geophys. Res. Lett., 35, L09306. https://doi.org/10.1029/2007GL033074
  22. Maria, A. and Carey, S. (2002) Using fractal analysis to quantitatively characterize the shapes of volcanic particles. J. Geophys. Res., 107, 2283. https://doi.org/10.1029/2001JB000822
  23. Perret, J.S., Prasher, S.O., and Kacimov, A.R. (2003) Mass fractal dimension of soil macropores using computed tomography: from the box-counting to the cubecounting algorithm. Eur. J. Soil Sci., 54, 569- 579. https://doi.org/10.1046/j.1365-2389.2003.00546.x
  24. Pride, S.R. and Masson, Y.J. (2006) Acoustic attenuation in self-affine porous structures. Phys. Rev. Lett., 97, 184301. https://doi.org/10.1103/PhysRevLett.97.184301
  25. Richet, P. (1984) Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta, 48, 471-483. https://doi.org/10.1016/0016-7037(84)90275-8
  26. Roy, A., Perfect, E., Dunne, W.M., and McKay, L.D. (2007) Fractal characterization of fracture networks: An improved box-counting technique. J. Geophys. Res., 112, B12201. https://doi.org/10.1029/2006JB004582
  27. Takei, Y. (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity. J. Geophys. Res., 103(B8), 18183-18203. https://doi.org/10.1029/98JB01489
  28. Takei, Y. and Holtzman, B.K. (2009) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J. Geophys. Res., 114, B06205. https://doi.org/10.1029/2008JB005850
  29. Tang, D. and Maragoni, A.G. (2008) Fractal dimensions of simulated and real fat crystal networks in 3D space. J. Am. Oil Chem. Soc., 85, 495-499. https://doi.org/10.1007/s11746-008-1237-7
  30. Toms, J., Muller, T.M., and Gurevich, B. (2007) Seismic attenuation in porous rocks with random patchy saturation. Geophys. Prospect., 55, 671-678. https://doi.org/10.1111/j.1365-2478.2007.00644.x
  31. von Barge, N. and Waff, H.S. (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: Results of computations of equilibrium microstructures. J. Geophys. Res., 91, 9261-9276. https://doi.org/10.1029/JB091iB09p09261
  32. Wright, H.M.N., Cashman, K.V., Gottesfeld, E.H., and Roberts, J.J. (2009) Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity. Earth Planet. Sci. Lett., 280, 93-104. https://doi.org/10.1016/j.epsl.2009.01.023
  33. Yu, B. and Liu, W. (2004) Fractal analysis of permeabilities for porous media. AIChE J., 50, 46-57. https://doi.org/10.1002/aic.10004