DOI QR코드

DOI QR Code

Characterization of Arsenic Adsorption onto Hematite

적철석(Hematite) 표면의 비소 흡착 특성

  • Kim, Seong Hee (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Woo Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 김성희 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Received : 2012.11.20
  • Accepted : 2012.12.27
  • Published : 2012.12.31

Abstract

Hematite has been known to be the most stable form of various iron (oxyhydr)oxides in the surface environments. In this study, its properties as an adsorbent were examined and also adsorption of arsenic onto hematite was characterized as well. The specific surface area of hematite synthesized in our laboratory appeared to be $31.8g\;m^2/g$ and its point of zero salt effect, (PZSE) determined by potentiometric titration was observed 8.5. These features of hematite may contribute to high capacity of arsenic adsorption. From several adsorption experiments undertaken at the identical solution concentrations over pH 2~12, the adsorption of As(III) (arsenite) was greater than that of As(V) (arsenate). As of pH-dependent adsorption patterns, in addition, arsenite adsorption gradually increased until pH 9.2 and then sharply decreased with pH, whereas adsorption of arsenate was greatest at pH 2.0 and steadily decreased with the increasing pH from 2 to 12. The characteristics of these pH-dependent adsorption patterns might be caused by combined effects of the variation in the chemical speciation of arsenic and the surface charge of hematite. The experimental results on adsorption kinetics show that adsorption of both arsenic species onto hematite approached equilibrium within 20 h. Additionally, the pseudo-second-order model was evaluated to be the best fit for the adsorption kinetics of arsenic onto hematite, regardless of arsenic species, and the rate constant of As(V) adsorption was investigated to be larger than that of As(III).

철 (산수)산화물들 중 지표환경에서 가장 안정된 형태로 알려진 적철석의 비소에 대한 흡착제로서의 다양한 특성을 조사하고 비소와의 흡착특성을 규명하였다. 본 연구에서 합성된 적철석은 $31.8g\;m^2/g$의 비표면적을 가졌으며, 전위차 적정법(potentiometric titration)에 의해 측정된 영전하점(point of zero salt effect, PZSE)은 8.5로 비소에 대한 높은 흡착능은 이러한 적철석의 특성들에 기인한 것으로 판단된다. 동일한 수용상 농도와 pH 2.0~12 범위에서 3가 비소와 5가 비소의 적철석에 대한 흡착량을 비교한 결과 3가 비소가 5가 비소보다 큰 흡착량을 보였다. 그리고 pH에 따른 흡착경향은 3가 비소의 경우에는 pH 9.2까지 지속적으로 흡착량이 증가하다가 그 이상의 pH에서는 흡착량이 급격하게 감소한 반면, 5가 비소는 pH 2.0에서 가장 높은 흡착량을 나타내다가 pH가 증가하면서 지속적으로 감소하는 것으로 조사되었다. 이러한 pH에 따른 흡착특성은 pH에 따라서 적철석의 표면전하 특성과 비소 화학종의 존재형태가 변화하기 때문인 것으로 판단된다. 흡착 반응속도에 대한 실험 결과에 의하면, 두 비소 종 모두 20시간 이내에 평형 흡착에 도달하는 것으로 나타났다. 그리고 비소의 화학종과 관계없이 적철석과의 흡착반응속도를 가장 잘 모사하는 반응속도 모델로는 유사이차(Pseudo-second-order) 모델로 평가되었으며, 5가 비소가 3가 비소보다 반응속도상수가 크게 나타났다.

Keywords

References

  1. Bai, B., Hankins, N. P., Hey, M. J., and Kingman, S. W. (2004) In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Industrial Engineering and Chemistry Research, 43, 5326- 5338. https://doi.org/10.1021/ie034307t
  2. Carrasco, N., Kretzchmar, R., Pesch, M.-L., and Kraemer, S. M. (2007) Low concentrations of surfactants enhanced siderophore-promoted dissolution of goethite. Environmental Science & Technology, 37, 3633-3638.
  3. Davis, J. A. and Kent, D. B. (1990) Surface complexation modeling in aqueous geochemistry. In: Schindler, P. W. (ed.), Reviews in Mineralogy and Geochemistry, 23(1), 170-260.
  4. Dixit, S. and Hering, J. G. (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37, 4182-4189. https://doi.org/10.1021/es030309t
  5. Du, Q., Sun, Z., Forsling, W., and Tang, H. (1997) Acidbase properties of aqueous illite surfaces. Journal of Colloid and Interface Science, 187, 221-231. https://doi.org/10.1006/jcis.1996.4631
  6. Fuller, C. C., Davis, J. A., and Waychunas, G. A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 57, 2271-2282. https://doi.org/10.1016/0016-7037(93)90568-H
  7. Gimenez, J., Martinez, M., de Pablo, J., Rovira, M., and Duro, L. (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials., 141, 575-580. https://doi.org/10.1016/j.jhazmat.2006.07.020
  8. He, Y.T. and Traina, S.J. (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environmental Science & Technology, 39, 4499-4504. https://doi.org/10.1021/es0483692
  9. Inskeep, W.P., McDermott, T.R., and Fendorf, S. (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger, W.T., Jr. (ed.), Environmental Chemistry of Arsenic, Marcel Dekker, New York, 183-215.
  10. Jain, A., Raven, K.P., and Loeppert, R.H. (1999) Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environmental Science & Technology, 33, 1179-1184. https://doi.org/10.1021/es980722e
  11. Jeong, H.S., Lee, W.C., Cho, H.G., and Kim, S.O. (2008) Study on adsorption characteristics of arsenic on magnetite. Journal of the Mineralogical Society of Korea, 21, 227-237 (in Korean with English abstract).
  12. Jonsson, C.M., Persson, P., Sjöberg, S., and Loring, J.S. (2008) Adsorption of glyphosate on goethite (${\alpha}$- FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environmental Science & Technology, 42, 2464-2469. https://doi.org/10.1021/es070966b
  13. Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T., and Kim, S.O. (2008) Adsorption of arsenic onto two-line ferrihydrite. Journal of the Mineralogical Society of Korea, 21, 227-237 (in Korean with English abstract).
  14. Kim, S.O., Lee, W.C., Jeong, H.S., and Cho, H.G. (2009) Adsorption of arsenic on goethite. Journal of the Mineralogical Society of Korea, 22, 177-189 (in Korean with English abstract).
  15. Ko, I., Kim, J.Y., Kim, K.W., Ahn, J.S., and Davis, A.P. (2005) Effect of soil organic matter on arsenic adsorption in the hematite-water interface: Chemical speciation modeling and adsorption mechanism. Economic and Environmental Geology, 38, 23-31 (in Korean with English abstract).
  16. Ko, I., Lee, S.W., Kim, J.Y., Kim, K.W., and Lee, C.H. (2004) Removal of arsenite and arsenate by a sand coated with colloidal hematite particle. Journal of KoSSGE, 9, 63-69 (in Korean with English abstract).
  17. Kraepiel, A.M.L., Keller, K., and Morel, F.M.M. (1998) On the acid-base chemistry of permanently charged minerals. Environmental Science & Technology, 32, 2829-2838. https://doi.org/10.1021/es9802899
  18. La Force, M.J., Hansel, C.M., and Fendorf, S. (2000) Arsenic speciation, seansonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emergent Wetland. Environmental Science & Technology, 34, 3937-3943. https://doi.org/10.1021/es0010150
  19. Lee, S.E., Neue, H.U., Park, J.K., and Lim, S.H (1993) Comparison of the Ion adsorption method, potentiometric titration, and backtitration technique for surface charge measurement in Ultisol, Alfiso, and Inceptisol. Korean Journal of Soil Science and Fertilizer, 26, 160-171 (in Korean with English abstract).
  20. Lee, W.C., Choi, S.H., Cho, H.G., and Kim, S.O. (2011) X-ray absorption spectroscopy study on surface interaction of arsenite onto two-line ferrihydrite at pHs 4 and 10. Journal of the Mineralogical Society of Korea, 24, 73-82 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.2.073
  21. Lee, W.C., Jeong, H.S., Kim, J,Y., and Kim, S.O. (2009) Study on adsorption features of arsenic onto lepidocrocite. Economic and Environmental Geolgoy, 42, 95-105 (in Korean with English abstract).
  22. Lowry, G.V. and Johnson, K.M. (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 38, 5208-5216. https://doi.org/10.1021/es049835q
  23. Mamindy-Pajany, Y., Hurel, C., Marmier, N., and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. Chimie, 12, 876-881. https://doi.org/10.1016/j.crci.2008.10.012
  24. Masue, Y., Loeppert, R. H., and Kramer, T. A. (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environmental Science & Technology, 41, 837-842. https://doi.org/10.1021/es061160z
  25. Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A.A., Reeder, R.J., and Grey, C.P. (2005) Investigating sorpton on iron-oxyhydroxide soil minerals by solid -state NMR spectroscopy: A 6Li MAS NMR study of adsorption and absorption on goethite. Journal of Physical Chemistry B., 109, 18310-18315. https://doi.org/10.1021/jp051433x
  26. Nowack, B., Lützenkirchen, J., Behra, P., and Sigg, L. (1996) Modeling the adsorption of metal−EDTA complexes onto oxides, Environmental Science & Technology, 30, 2397-2405. https://doi.org/10.1021/es9508939
  27. Ponder, S.M., Darab, J.G., and Mallouk, T.E. (2000) Remediation of Cr(VI) and PB(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34, 2564-2569. https://doi.org/10.1021/es9911420
  28. Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science & Technology, 32, 344-349. https://doi.org/10.1021/es970421p
  29. Rietra, R. P. J. J., Hiemstra, T., and van Riemsdijk, W. H. (2001) Interaction between calcium and phosphate adsorption on goethite. Environmental Science & Technology, 35, 3369-3374. https://doi.org/10.1021/es000210b
  30. Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 188p.
  31. Singh, U. and Uehara, G. (1998) Electrochemistry of the double layer: Principles and applications to soils. In: Sparks, D.L. (ed.), Soil physical chemistry, CRC Press, Boca Raton, Florida, USA, 1-56.
  32. Sparks, D.L. (1999) Kinetics and mechanisms of chemical reactions at the soil/mineral water interface. In "Soil Physical Chemistry", 2nd ed. (D. L. Sparks, ed.), pp. 135-191, CRC Press, Boca Raton, FL.
  33. Sparks, D.L. (2003) Environmental Soil Chemistry, pp. 207-244, Academic Press, San Diega, CA.
  34. Stumm, W. (1992) Chemistry of the solid-water interface. John Wiley & Sons, New York, USA.
  35. Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/ adsorbent ratios and co-occurring solutes. Colloid Surface A, 107, 97-110. https://doi.org/10.1016/0927-7757(95)03368-8
  36. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enzyme and Microbial Technology, 6, 530-537. https://doi.org/10.1016/0141-0229(84)90081-4
  37. Yang, J.E., Park, D.S., and Han, D.S. (1995) Comparative assessment of the half-lives of benfuresate and oxolinic acid estimated from kinetic models under field soil condition. Korean Journal of Environmental Agriculture, 14, 302-311 (in Korean with English abstract).

Cited by

  1. Removal of Aqueous Arsenic Via Adsorption onto Si Slag vol.46, pp.6, 2013, https://doi.org/10.9719/EEG.2013.46.6.521
  2. Enhanced Separation Technique of Heavy Metal (Pb, Zn) in Contaminated Agricultural Soils near Abandoned Metal Mine vol.18, pp.7, 2013, https://doi.org/10.7857/JSGE.2013.18.7.041
  3. Characterization of Arsenic Sorption on Manganese Slag vol.26, pp.4, 2013, https://doi.org/10.9727/jmsk.2013.26.4.229
  4. Fabrication of Iron Oxide Nanotubes by Anodization for Phosphorus Adsorption in Water vol.30, pp.6, 2016, https://doi.org/10.11001/jksww.2016.30.6.691
  5. 철산화물의 합성 및 이를 이용한 비소의 흡착제거 vol.28, pp.1, 2012, https://doi.org/10.5322/jesi.2019.28.1.99
  6. 교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향 vol.53, pp.4, 2020, https://doi.org/10.9719/eeg.2020.53.4.347
  7. Variations in Spectral Signals of Heavy Metal Contamination in Mine Soils Controlled by Mineral Assemblages vol.12, pp.20, 2012, https://doi.org/10.3390/rs12203273