Browse > Article
http://dx.doi.org/10.9727/jmsk.2016.29.3.155

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR  

Lee, A Chim (School of Earth and Environmental Sciences, Seoul National University)
Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.29, no.3, 2016 , pp. 155-165 More about this Journal
Abstract
Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.
Keywords
Sodium borate glasses; boron-bearing multicomponent silicate melts (malinkoite-nepheline pseudo-binary glasses); NMR; atomic structure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bartels, A., Behrens, H., Holtz, F., Schmidt, B.C., Fechtelkord, M., Knipping, J., Crede, L., Baasner, A., and Pukallus, N. (2013) The effect of fluorine, boron and phosphorus on the viscosity of pegmatite forming melts. Chemical Geology, 346, 184-198.   DOI
2 Bray, P.J. (1985) Nuclear magnetic resonance studies of glass structure. Journal of Non-Crystalline Solids, 73, 19-45.   DOI
3 Dingwell, D., Knoche, R., Webb, S., and Pichavant, M. (1992) The effect of $B_2O_3$ on the viscosity of haplogranitic liquids. American Mineralogist, 77, 457-461.
4 Du, L.-S. and Stebbins, J.F. (2003a) Nature of silicon-boron mixing in sodium borosilicate glasses: a high-resolution $^{11}B$ and $^{17}O$ NMR study. The Journal of Physical Chemistry B, 107, 10063-10076.
5 Du, L.-S. and Stebbins, J.F. (2003b) Site preference and Si/B mixing in mixed-alkali borosilicate glasses: a high-resolution $^{11}B$ and $^{17}O$ NMR study. Chemistry of materials, 15, 3913-3921.   DOI
6 Ellison, A.J. and Navrotsky, A. (1989) Thermochemistry and structure of model waste glass compositions, MRS Proceedings. Cambridge Univ Press.
7 Ferlat, G., Charpentier, T., Seitsonen, A.P., Takada, A., Lazzeri, M., Cormier, L., Calas, G., and Mauri, F. (2008) Boroxol rings in liquid and vitreous $B_2O_3$ from first principles. Physical review letters, 101, 065504.   DOI
8 Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. Journal of the American Chemical Society, 117, 5367-5368.   DOI
9 Hwang, S.J., Fernandez, C., Amoureux, J.P., Cho, J., Martin, S.W., and Pruski, M. (1997) Quantitative study of the short range order in $B_2O_3$ and $B_2S_3$ by MAS and two-dimensional triple-quantum MAS $^{11}B$ NMR. Solid State Nuclear Magnetic Resonance, 8, 109-121.   DOI
10 Jellison, G.E. and Bray, P.J. (1978) A structural interpretation of B-10 and B-11 NMR spectra in sodium borate glasses. Journal of Non-Crystalline Solids, 29, 187-206.   DOI
11 Lee, S.K., Musgrave, C.B., Zhao, P., and Stebbins, J.F. (2001) Topological disorder and reactivity of borosilicate glasses: quantum chemical calculations and $^{17}O$ and $^{11}B$ NMR study. The Journal of Physical Chemistry B, 105, 12583-12595.   DOI
12 Kilymis, D., Delaye, J.-M., and Ispas, S. (2016) Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: insights from molecular dynamics simulations. The Journal of Chemical Physics, 145, 044505.   DOI
13 Lee, A.C. and Lee, S.K. Atomistic origins of the transport properteis of multicomponent borosilicate glasses: Insights from high-resolution solid-state NMR. In preparation.
14 Lee, S.K., Eng, P.J., Mao, H.-K., Meng, Y., Newville, M., Hu, M.Y., and Shu, J. (2005a) Probing of bonding changes in $B_2O_3$ glasses at high pressure with inelastic X-ray scattering. Nature Materials, 4, 851-854.   DOI
15 Lee, S.K., Kim, H.N., Lee, B.H., Kim, H.-I., and Kim, E.J. (2009) Nature of chemical and topological disorder in borogermanate glasses: insights from B-11 and O-17 solid-State NMR and quantum chemical calculations. The Journal of Physical Chemistry B, 114, 412-420.
16 Lee, S.K., Mibe, K., Fei, Y., Cody, G.D., and Mysen, B.O. (2005b) Structure of $B_2O_3$ glass at high pressure: a B-11 solid-state NMR study. Physical review letters, 94, 165507.   DOI
17 Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist, 84, 937-945.   DOI
18 Lee, S.K. and Stebbins, J.F. (2002) Extent of intermixing among framework units in silicate glasses and melts. Geochimica et Cosmochimica Acta, 66, 303-309.   DOI
19 Levitt, M.H. (2001) Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons.
20 Lide, D.R. (2008) CRC Handbook of Chemistry and Physics, 88th ed. Journal of the American Chemical Society, 130, 382-382.
21 Park, S.Y. and Lee, S.K. (2009) Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR. Journal of the Mineralogical Society of Korea, 22, 343-352.
22 Mackenzie, K.J. and Smith, M.E. (2002) Multinuclear solid-state nuclear magnetic resonance of inorganic materials. Elsevier.
23 Morgan, G.B. and London, D. (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. Contributions to Mineralogy and Petrology, 102, 281-297.   DOI
24 Palme, H. and O'Neill, H.S.C. (2003) Cosmochemical estimates of mantle composition. Treatise on geochemistry, 2, 1-38.
25 Park, S.Y. and Lee, S.K. (2014) High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: implications for structure of andesitic melts. Geochimica et Cosmochimica Acta, 147, 26-42.   DOI
26 Park, S.Y. and Lee, S.K. (2015) A Solid-state 27 Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses. Journal of the Mineralogical Society of Korea, 28, 61-69.   DOI
27 Pichavant, M. (1983) Melt-fluid interaction deduced from studies of silicate-$B_2O_3-H_2O$ systems at 1 kbar. Bulletin de Mineralogie, 106, 201-211.
28 Pierce, E.M., Reed, L.R., Shaw, W.J., McGrail, B.P., Icenhower, J.P., Windisch, C.F., Cordova, E.A., and Broady, J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline ($NaAlSiO_4$)-malinkoite ($NaBSiO_4$) join. Geochimica et Cosmochimica Acta, 74, 2634-2654.   DOI
29 Turner, G.L., Smith, K.A., Kirkpatrick, R.J., and Oldfield, E. (1986) Boron-11 nuclear magnetic resonance spectroscopic study of borate and borosilicate minerals and a borosilicate glass. Journal of Magnetic Resonance (1969) 67, 544-550.   DOI
30 Sen, S., Xu, Z. and Stebbins, J.F. (1998) Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution $^{11}B$, $^{29}Si$ and $^{27}Al$ NMR studies. Journal of Non-Crystalline Solids, 226, 29-40.   DOI
31 Youngman, R.E., Haubrich, S.T., Zwanziger, J.W., Janicke, M.T., and Chmelka, B.F. (1995) Short-and intermediate-range structural ordering in glassy boron oxide. Science, 269, 1416.   DOI
32 Youngman, R.E. and Zwanziger, J.W. (1996) Network modification in potassium borate glasses: structural studies with NMR and Raman spectroscopies. The Journal of Physical Chemistry, 100, 16720-16728.   DOI
33 Zhong, J. and Bray, P.J. (1989) Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR. Journal of Non-Crystalline Solids, 111, 67-76.   DOI
34 Konijnendijk, W.L. and Stevels, J.M. (1975) The structure of borate glasses studied by Raman scattering. Journal of Non-Crystalline Solids, 18, 307-331.   DOI