DOI QR코드

DOI QR Code

Core-hole Effect on Partial Electronic Density of State and O K-edge x-ray Raman Scattering Spectra of High-Pressure SiO2 Phases

전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석

  • Khim, Hoon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yi, Yoo Soo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 김훈 (서울대학교 지구환경과학부) ;
  • 이유수 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2017.04.25
  • Accepted : 2017.05.29
  • Published : 2017.06.30

Abstract

$SiO_2$ is one of the most abundant constituents of the Earth's crust and mantle. Probing its electronic structures at high pressures is essential to understand their elastic and thermodynamic properties in the Earth's interior. The in situ high-pressure x-ray Raman scattering (XRS) experiment has been effective in providing detailed bonding transitions of the low-z materials under extreme compression. However, the relationship between the local atomic structures and XRS features at high pressure has not been fully established. The ab initio calculations have been used to overcome such experimental difficulties. Here we report the partial density of states (PDOS) of O atoms and the O K-edge XRS spectra of ${\alpha}-quartz$, ${\alpha}-cristobalite$, and $CaCl_2$-type $SiO_2$ phases calculated using ab initio calculations based on the full-potential linearized augmented plane wave (FP-LAPW) method. The unoccupied O PDOSs of the $CaCl_2$-type $SiO_2$ calculated with and without applying the core-hole effects present significantly distinctive features. The unoccupied O p states of the ${\alpha}-quartz$, ${\alpha}-cristobalite$ and $CaCl_2$-type $SiO_2$ calculated with considering the core-hole effect present similar features to their calculated O K-edge XRS spectra. This confirms that characteristic features in the O K-edge XRS stem from the electronic transition from 1s to unoccupied 2p states. The current results indicate that the core-hole effects should be taken in to consideration to calculate the precise O K-edge XRS features of the $SiO_2$ polymorphs at high pressure. Furthermore, we also calculated O K-edge XRS spectrum for $CaCl_2$-type $SiO_2$ at ~63 GPa. As the experimental spectra for these high pressure phases are not currently available, the current results for the $CaCl_2$-type $SiO_2$ provide useful prospect to predict in situ high-pressure XRS spectra.

$SiO_2$는 지각과 맨틀을 구성하는 풍부한 물질로 고압 상태의 $SiO_2$ 원자구조를 결정짓는 전자구조적 특성에 대한 상세한 이해는 지구 내부의 탄성과 열역학적 성질에 대한 통찰을 제공한다. $SiO_2$처럼 경원소(low-z)로 이루어진 지구 물질의 고압상 전자구조는 in situ 고압 XRS (x-ray Raman scattering) 실험을 통해 연구되어 왔다. 하지만 기존의 고압 실험 방법으로는 물질의 국소 원자구조와 XRS 스펙트럼 간 상관관계를 밝히는데 한계가 있다. 이를 극복하고 더 높은 압력에서 존재하는 $SiO_2$에 대한 XRS 정보를 얻기 위해 밀도 범함수 이론(density functional theory; DFT)에 기반을 둔 제1원리(ab initio) 계산법을 이용한 XRS 스펙트럼 계산 연구들이 진행되고 있다. 비탄성 X-선 산란에 의하여 원자핵 주변 1s 오비탈에 만들어지는 전자-정공(core-hole)은 경원소 물질의 국소 전자구조에 크게 영향을 미치기 때문에 O K-edge XRS 스펙트럼 형태를 계산할 때 중요하게 고려해야 한다. 본 연구에서는 온-퍼텐셜 선형보충파(full-potential linearized augmented plane wave; FP-LAPW) 방법론에 기반하는 WIEN2k 프로그램을 사용하여 ${\alpha}-quartz$, ${\alpha}-cristobalite$ 그리고 $CaCl_2$-구조를 갖는 $SiO_2$에 대한 O 원자 전자 오비탈의 부분 상태밀도(partial density of states; PDOS)와 O K-edge XRS 스펙트럼을 계산하였다. 또한, $CaCl_2$-구조를 갖는 $SiO_2$의 O 원자 PDOS의 전자-정공 효과의 적용 여부에 따른 차이를 비교하여, 원자핵 부근 전자구조 변화에 따른 PDOS의 피크 세기와 위치 변화가 크게 나타났다는 사실을 확인할 수 있었다. 또한 계산된 각 $SiO_2$ 구조의 O K-edge XRS 스펙트럼이 각 $SiO_2$ 구조에서 계산된 O 원자의 $p^*$ 오비탈의 PDOS 결과와 매우 유사한 형태를 갖고 있음을 확인하였다. 이는 O K-edge XRS 스펙트럼이 갖는 대부분의 특징적인 피크들이 O 원자의 점유 1s 오비탈에서 $2p^*$ 오비탈로의 전자전이에 기인하기 때문이다. 본 연구의 결과는 $SiO_2$에 대한 정확한 O K-edge XRS 스펙트럼을 계산하는데 있어 전자-정공 효과를 고려해야 한다는 사실을 보여준다. 또한, 실험적으로는 재현이 어려운 고압 환경에 존재하는 $CaCl_2$-구조를 갖는 $SiO_2$ (~63 GPa)에 대한 O K-edge XRS 스펙트럼 계산을 통해, 제1원리 계산이 고압상 물질의 물성 연구에 이용될 수 있다는 사실을 보여준다.

Keywords

References

  1. Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landau-type transition in stishovite. Science 282, 720-724. https://doi.org/10.1126/science.282.5389.720
  2. Andrault, D., Pesce, G., Bouhifd, M.A., Casanova, B.N., Henot, J.M., and Mezouar, M. (2014) Melting of subducted basalt at the core-mantle boundary. Science 344, 892-895. https://doi.org/10.1126/science.1250466
  3. Arai, S., Shimizu, Y., and Gervilla, F. (2003) Quartz diorite veins in a peridotite xenolith from Tallante, Spain: implications for reaction and survival of slab-derived $SiO_2$-oversaturated melt in the upper mantle. Proceedings of the Japan Academy, Series B 79, 145-150.
  4. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J. (2001) WIEN2k. An augmented plane wave+ local orbitals program for calculating crystal properties.
  5. Cataldo, G.F., Davis, S., and Gutierrez, G. (2016) Z method calculations to determine the melting curve of silica at high pressures. Journal of Physics: Conference Series 720, 012032. https://doi.org/10.1088/1742-6596/720/1/012032
  6. Cohen, R.E. (1993) First-principles predictions of elasticity and phase transitions in high pressure $SiO_2$ and geophysical implications. High-pressure research: Application to earth and planetary sciences, 425-431.
  7. Cordier, P., Mainprice, D., and Mosenfelder, J.L. (2004) Mechanical instability near the stishovite-$CaCl_2$ phase transition. European journal of mineralogy 16, 387-399. https://doi.org/10.1127/0935-1221/2004/0016-0387
  8. Driver, K.P., Cohen, R.E., Wu, Z., Militzer, B., Rios, P.L., Towler, M.D., Needs, R.J., and Wilkins, J.W. (2010) Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica. Proceedings of the National Academy of Sciences 107, 9519-9524. https://doi.org/10.1073/pnas.0912130107
  9. Fukui, H., Kanzaki, M., Hiraoka, N., and Cai, Y.Q. (2008) Coordination environment of silicon in silica glass up to 74 GPa: An x-ray Raman scattering study at the silicon L-edge. Physical Review B 78, 012203. https://doi.org/10.1103/PhysRevB.78.012203
  10. Fukui, H., Kanzaki, M., Hiraoka, N., and Cai, Y.Q. (2009) X-ray Raman scattering for structural investigation of silica/silicate minerals. Physics and Chemistry of Minerals 36, 171-181. https://doi.org/10.1007/s00269-008-0267-x
  11. Hebert, C. (2007) Practical aspects of running the WIEN2k code for electron spectroscopy. Micron 38, 12-28. https://doi.org/10.1016/j.micron.2006.03.010
  12. Hiraoka, N. and Cai, Y.Q. (2010) High-pressure studies by x-ray Raman scattering. Synchrotron Radiation News 23, 26-31.
  13. Hirose, K., Takafuji, N., Sata, N., and Ohishi, Y. (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters 237, 239-251. https://doi.org/10.1016/j.epsl.2005.06.035
  14. Ito, E., Takahashi, E., and Matsui, Y. (1984) The mineralogy and chemistry of the lower mantle: an implication of the ultrahigh-pressure phase relations in the system $MgO-FeO-SiO_2$. Earth and Planetary Science Letters 67, 238-248. https://doi.org/10.1016/0012-821X(84)90119-5
  15. Jorissen, K. and Rehr, J.J. (2010) Calculations of electron energy loss and x-ray absorption spectra in periodic systems without a supercell. Physical Review B 81, 245124. https://doi.org/10.1103/PhysRevB.81.245124
  16. Kaneshima, S. and Helffrich, G. (1999) Dipping low-velocity layer in the mid-lower mantle: evidence for geochemical heterogeneity. Science 283, 1888-1892. https://doi.org/10.1126/science.283.5409.1888
  17. Karki, B.B., Warren, M.C., Stixrude, L., Ackland, G.J., and Crain, J. (1997) Ab initio studies of high-pressure structural transformations in silica. Physical Review B 55, 3465.
  18. Kesson, S.E., Gerald, J.D.F., and Shelley, J.M.G. (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature 372, 767-769. https://doi.org/10.1038/372767a0
  19. Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.K. (1995) Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 374, 243-245. https://doi.org/10.1038/374243a0
  20. Knittle, E. and Jeanloz, R. (1991) Earth's core-mantle boundary: results of experiments at high pressures and temperatures. Science 251, 1438. https://doi.org/10.1126/science.251.5000.1438
  21. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects. Physical review 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
  22. Krisch, M. and Sette, F. (2002) X-ray Raman scattering from low-z materials. Surface Review and Letters 9, 969-976. https://doi.org/10.1142/S0218625X02001689
  23. Kuwayama, Y., Hirose, K., Sata, N., and Ohishi, Y. (2011) Pressure-induced structural evolution of pyrite- type $SiO_2$. Physics and Chemistry of Minerals 38, 591-597. https://doi.org/10.1007/s00269-011-0431-6
  24. Lee, S.K., Eng, P.J., and Mao, H.K. (2014) Probing of pressure-induced bonding transitions in crystalline and amorphous earth materials: insights from x-ray Raman scattering at high pressure. Reveiws Mineralogy and Geochemistry 78, 139-174. https://doi.org/10.2138/rmg.2014.78.4
  25. Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y., Newville, M., Hu, M.Y., and Shu, J. (2005b) Probing of bonding changes in $B_2O_3$ glasses at high pressure with inelastic x-ray scattering. Nature Materials 4, 851-854. https://doi.org/10.1038/nmat1511
  26. Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P.J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., and Chow, P. (2008) X-ray Raman scattering study of $MgSiO_3$ glass at high pressure: Implication for triclustered $MgSiO_3$ melt in Earth's mantle. Proceedings of the National Academy of Sciences 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105
  27. Lee, S.K., Park, S.Y., Kim, H.I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y., and Chow, P. (2012) Structure of shock compressed model basaltic glass: Insights from O K-edge x-ray Raman scattering and high-resolution $^{27}Al$ NMR spectroscopy. Geophysical Research Letters 39.
  28. Lin, J.F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y.Q., Hiraoka, N., Yoo, C.S., Trave, A., Eng, P., and Hu, M.Y. (2007) Electronic bonding transition in compressed $SiO_2$ glass. Physical Review B 75, 012201.
  29. Mao, W.L., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.C., Heinz, D.L., Shu, J., Meng, Y., and Hemley, R.J. (2003) Bonding changes in compressed superhard graphite. Science 302, 425-427. https://doi.org/10.1126/science.1089713
  30. Meng, Y., Eng, P.J., John, S.T., Shaw, D.M., Hu, M.Y., Shu, J., Gramsch, S.A., Kao, C.C., Hemley, R.J., and Mao, H.K. (2008) Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding. Proceedings of the National Academy of Sciences 105, 11640-11644. https://doi.org/10.1073/pnas.0805601105
  31. Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
  32. Murakami, M., Hirose, K., Ono, S., and Ohishi, Y. (2003) Stability of $CaCl_2$-type and ${\alpha}-PbO_2$-type $SiO_2$ at high pressure and temperature determined by in-situ x-ray measurements. Geophysical Research Letters 30.
  33. Nettelmann, N., Fortney, J.J., Kramm, U., and Redmer, R. (2011) Thermal evolution and structure models of the transiting super-Earth GJ 1214b. The Astrophysical Journal 733, 2. https://doi.org/10.1088/0004-637X/733/1/2
  34. Ono, S., Ito, E., and Katsura, T. (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth and Planetary Science Letters 190, 57-63. https://doi.org/10.1016/S0012-821X(01)00375-2
  35. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics 64, 1045. https://doi.org/10.1103/RevModPhys.64.1045
  36. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters 100, 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  37. Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S., and Wallace, R.M. (2011) The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$. Applied Physics Letters 99, 122108. https://doi.org/10.1063/1.3643444
  38. Schmahl, W.W., Swainson, I.P., Dove, M.T., and Graeme-Barber, A. (1992) Landau free energy and order parameter behaviour of the ${\alpha}/{\beta}$ phase transition in cristobalite. Zeitschrift fur Kristallographie-Crystalline Materials 201, 125-146.
  39. Schwarz, K. (2003) DFT calculations of solids with LAPW and WIEN2k. Journal of Solid State Chemistry 176, 319-328. https://doi.org/10.1016/S0022-4596(03)00213-5
  40. Sidorin, I., Gurnis, M., and Helmberger, D.V. (1999) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science 286, 1326-1331. https://doi.org/10.1126/science.286.5443.1326
  41. Sternemann, C., Volmer, M., Soininen, J.A., Nagasawa, H., Paulus, M., Enkisch, H., Schmidt, G., Tolan, M., and Schulke, W. (2003) Momentum-transfer dependence of x-ray Raman scattering at the Be K-edge. Physical Review B 68, 035111. https://doi.org/10.1103/PhysRevB.68.035111
  42. Stixrude, L. and Jeanloz, R. (2007) Constraints on seismic models from other disciplines-constraints from mineral physics on seismological models-1.22.
  43. Sun, S.S. (1987) Chemical composition of Archaean komatiites: implications for early history of the earth and mantle evolution. Journal of volcanology and geothermal research 32, 67-82. https://doi.org/10.1016/0377-0273(87)90037-0
  44. Tse, J.S. (2002) Ab initio molecular dynamics with density functional theory. Annual review of physical chemistry 53, 249-290. https://doi.org/10.1146/annurev.physchem.53.090401.105737
  45. Tsuchiya, T., Caracas, R., and Tsuchiya, J. (2004) First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters 31.
  46. Tsuchiya, T.a.T., J. (2011) Prediction of a hexagonal $SiO_2$ phase affecting stabilities of $MgSiO_3$ and $CaSiO_3$ at multimegabar pressures. Proceedings of the National Academy of Sciences 108, 1252-1255. https://doi.org/10.1073/pnas.1013594108
  47. Will, G., Bellotto, M., Parrish, W., and Hart, M. (1988) Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. Journal of Applied Crystallography 21, 182-191. https://doi.org/10.1107/S0021889887011567
  48. Wu, M., Liang, Y.F., Jiang, J.Z., and John, S.T. (2012) Structure and properties of dense silica glass. Scientific reports 2.
  49. Wu, S., Umemoto, K., Ji, M., Wang, C.Z., Ho, K.M., and Wentzcovitch, R.M. (2011) Identification of post-pyrite phase transitions in $SiO_2$ by a genetic algorithm. Physical Review B 83, 184102. https://doi.org/10.1103/PhysRevB.83.184102
  50. Yi, Y.S. and Lee, S.K. (2012) Pressure-induced changes in local electronic structures of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. American Mineralogist 97, 897-909. https://doi.org/10.2138/am.2012.3943
  51. Yi, Y.S. and Lee, S.K. (2014) Quantum chemical calculations of the effect of Si-O bond length on x-ray Raman scattering features for $MgSiO_3$ perovskite. Journal of the Mineralogical Society of Korea 27, 1-15. https://doi.org/10.9727/jmsk.2014.27.1.11
  52. Yi, Y.S. and Lee, S.K. (2016) Atomistic origins of pressure-induced changes in the O K-edge x-ray Raman scattering features of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations. Physical Review B 94, 094110. https://doi.org/10.1103/PhysRevB.94.094110
  53. Yi, Y.S.L. and S. K. (2010) Local electronic structures of $SiO_2$ polymorph crystals: Insights from O K-edge energy-loss near-edge spectroscopy. Journal of the Mineralogical Society of Korea 23, 403-411.
  54. Yonehara, T., Smith, H.I., Thompson, C.V., and Palmer, J.E. (1984) Graphoepitaxy of Ge on $SiO_2$ by solid-state surface-energy-driven grain growth. Applied Physics Letters 45, 631-633. https://doi.org/10.1063/1.95336

Cited by

  1. 양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석 vol.33, pp.1, 2020, https://doi.org/10.22807/kjmp.2020.33.1.1