Synthesis of Fe­Garnet for tile Immobilization of High Level Radioactive Waste

고준위 방사성폐기물의 고정화를 위한 Fe­석류석 합성 연구

  • ;
  • ;
  • ;
  • Yudintsev, S. V.
  • Published : 2003.12.01

Abstract

Garnet has been considered as a possible matrix for the immobilization of radioactive actinides. It is expected that Fe­based garnet be able to have the high substitution ability of actinide elements because ionic radius of Fe in tetrahedral site is larger than that of Si of Si­based garnet. Accordingly, we synthesized Fe­garnet with the batch composition of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$ and studied their phase relations and properties. Mixed samples were fabricated in pellet forms under the pressure of 400 kg/$\textrm{cm}^2$ and were sintered in the temperature range of 1100∼140$0^{\circ}C$ in atmospheric conditions. Phase identification and chemical composition of synthesized samples were analyzed by XRD and SEM/EDS. In results, where the compounds were sintered at 130$0^{\circ}C$, we optimally obtained Fe­garnets as the main phase, even though some minor phases like perovskite were included. The compositions of Fe­garnets synthesized from the batch compositions of $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$ and $Ca_2$CeZrFeF $e_3$ $O_{12}$, are $Ca_{2.5­3.2}$C $e_{0.3­0.7}$Z $r_{1.8­2.8}$F $e_{1.9­3.2}$ $O_{12}$ and $Ca_{2.2­2.5}$C $e_{0.8­1.0}$Z $r_{1.3­1.6}$ F $e_{0.4­.07}$ F $e_{3­3.2}$ $O_{12}$, respectively. Ca contents were exceeded and Ce contents were exceeded or depleted in 8­coodinated site, comparing to the initial batch composition. These results were caused by the compensation of the difference of ionic radius between Ca and Ce.

Fe­석류석인 경우, 사면체 배위를 하는 Fe의 이온반경이 Si보다 크기 때문에 고준위 방사성 폐기물에 다량 함유되어 있는 악티나이드 원소들을 고정화시킬 수 있는 매트릭스로 고려되고 있다. 따라서 본 연구에서는 $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$$Ca_2$CeZrFeF $e_3$ $O_{12}$인 조성을 가진 석류석을 합성하여 이들의 상평형 관계 및 특성을 연구하였다. 혼합된 시료는 200∼400 kg/$\textrm{cm}^2$의 압력으로 성형한 후, 1100∼140$0^{\circ}C$ 범위에서 온도 및 분위기를 변화시키면서 소결하였으며 합성된 시료는 XRD, SEM/EDS를 사용하여 상분석과 정량분석을 실시하였다. 실험결과, 이들 조성을 가진 석류석들은 130$0^{\circ}C$로 가열하였을 때, 최적 합성상을 얻을 수 있었지만 소량의 페롭스카이트 등 부수상이 공존하였다. $Ca_{2,5}$C $e_{0.5}$Z $r_2$F $e_3$ $O_{12}$$Ca_2$CeZrFeF $e_3$ $O_{12}$인 조성으로부터 합성된 Fe­석류석의 조성이 각각 $Ca_{2.5­3.2}$C $e_{0.3­0.7}$Z $r_{1.8­2.8}$F $e_{1.9­3.2}$ $O_{12}$$Ca_{2.2­2.5}$C $e_{0.8­1.0}$Z $r_{1.3­1.6}$F $e_{0.4­.07}$ F $e_{3­3.2}$ $O_{12}$였다. 특히 화학양론적 조성과 비교시, 합성된 석류석의 8배위 자리를 점하고 있는 Ca이 초과된 양상을 보였고, Ce의 함량은 초과 또는 결핍된 양상을 보였다. 이는 8배위 자리에서의 Ca과 Ce의 이온반경의 상대적인 차이 및 전하보상적 차원에서 비롯된 것으로 해석된다.에서 비롯된 것으로 해석된다.

Keywords

References

  1. 장영남, 채수천, 배인국, Yudintsev, S.V. (2002) 새로운 파이로클로어의 합성 및 경정화학적 특징. 한국광물학회지, 15, 1, 78-84.
  2. 채수천, 장영남, 배인국, Yudintsev, S.V.(2002) 고준위 핵폐기물의 고정화를 위한 메트릭스 개발 : Ce-파이로클로어 합성연구. 자원환경지질 35, 2, 97-102.
  3. Burakov, B.E. and Strykanova, E.E. (1998) Gamet Solid Solution of Y$^3$AI$^5$O$^12$-Gd$^3$Ga$^5$O$^12$-Y$^3$Ga$^5$O$^12$ (YAG-GGG-YGG) as a Prospective Crystalline Host-Phase for Pu Immobilization in the Presence of Ga. Proceedings of the International Conference Waste Management'98, Tucson, Arizona, USA, 1-5/03/1998, CD version, http://localhost:6017/html/sess34/34-05/34-05.htm.
  4. Burakov, B.E. and Anderson, E.B. (1998) Development of Crystalline Ceramic for Immobilization of TRU Wastes in V.G. Khlopin Radium Institute. Proceedings of the 2nd NUCEF International Symposium NUCEF'98, 16-17/11/98, Hitachinaka, Ibaraki, Japan, JAERI-Conf.99-004(Part I), 295-306.
  5. Burakov, B.E., Anderson, E.B., and Khlopin, V.G. (2000a) Experience of Y.G. Khlopin Radium Institute on Synthesis and Investigation of Pu-Doped Ceramics. AIP Conf Proc. Melville, NY, 159-160.
  6. Burakov, B.E., Anderson, E.B., and Knecht, D.A (1999) Ceramic Forms for Immobilizing Pu Using Zr, Y, AI Metal Additives. Environmental Issues and Waste Management Technologies IV, American Ceramic Society, Westerville, Ohio, 349-356.
  7. Burakov, B.E., Anderson, E.E., Zamoryanskaya, M.V.,and Petrova, M.A (2000b) Synthesis and study of 239Pu-dopedgadolinium-aluminum garnet. Mat. Res. Soc. Symp. Proc, 608, 419-422.
  8. Chae, S.C., Yudintsev, S.V., Jang, Y.N., and Bae, I.K. (2002) Host Phases for Actinides and Long-Lived Fission Products Transmutation/Immobilization. 7th Information Exchange Meeting, 14-16/10/2002, Jeju,Republic of Korea, 79; Actinide and Fission Product partitioning & transmutation.
  9. Ebbinghaus B.B., VanKonenburg R.A, Vance, E.R.,Jostsons, A, Anthony, R.G., Philip, C.V., and Wronkiewicz, D.J. (1995) Status of Plutonium Ceramic Immobilization processes and Immobilization Forms. Report No. CoONF-951259. Proceedings:Plutonium stabilization & immobilization workshop, Final Proceedings. Dec. 12-14, Washington,D.C. Sponsored by the U.S. Department of Energy, Washington, D.C. (U.S.A.). pages: 10. Size :449kb.
  10. Ioudintseva, T. and Yudintsev, S.V. (2002) CrystalChemical Approach to Design of Novel Actinide Waste Forms. 7th International Symposium on Experimental Mineralogy, Petrology and Geochemistry,.
  11. Ringwood A.E. (1985) Disposal of high-level nuclear waste: a geological perspective. Mineralogical Magazine,49, pt2, 159-176.
  12. Ringwood A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramrn, E.J. (1988) Synroc; Radioactive Waste Forms for the Future, Edited by Lutze, W. and Ewing, R.C., Elsevier, North-Holland, Amsterdam,Netherlands, 233-334.
  13. Sobolev, I.A., Stefanovsky, S.V., and Lifanov, F.A.(1995) Synthetic melted rock-type wasteforms. In:Scientific Basis for Nuclear Waste management-XYIII. MRS Symposia Proceedings, 353, pt2, 833-838.
  14. Yudintsev, S.V. (2001) Incorporation of U, Th, Zr and Gd into the Garnet-Structred Host. Proc. of the ICEM'01 (the 8th Int. Conf. Rad. Waste Management and Environ. Remed.).
  15. Yudintsev, S.V., Lapina, M.I., Ptashikin, AG.,Ioudintseva, T.S. Utsunomiya, S., Wang, L.M., and Ewing, R.C. (2002) Isomorphic Capacity and Radiation Stability of the Garnet-Structured Actinide Host. Proc. of the MRS Symp., 713, J111.28.1-4.