• Title/Summary/Keyword: Micro-Raman spectroscopy

Search Result 115, Processing Time 0.022 seconds

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils

  • Chae, Jong-Bok;Yu, Soo-Chang;Lee, Youn-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.193-199
    • /
    • 2007
  • Raman and fluorescence spectroscopies were employed to study the coil effects on the intermolecular structure of a rod-coil liquid crystalline (LC) oligomer, the esterification products of ethyl 4-[4'-oxy-4-biphenylcarbonyloxy]- 4'-biphenylcarboxylate with poly(propylene)oxides (PPO) (DP=12) and poly(ethylene oxide)s (PEO) (DP=12). Three different vibrational modes (carbonyl, aromatic C-H, and aromatic C=C) obtained from the Raman experiment at variable temperature indicate that PPO and PEO coils induce the hydrogen bonding in a different manner. Further information about the micro-environment around the mesogenic unit obtained by fluorescence excitation spectra of P12-4 (LC with PPO coil) and 12-4 (LC with PEO coil) suggests that the mesogenic unit of P12-4 is quite different from that of 12-4 in intermolecular structure. This study supports the results obtained only from Raman spectroscopy, providing more accurate information about the intermolecular structural changes of liquid crystalline polymers at a molecular level during the phase transitions.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process (저온 ICP-CVD 공정으로 제조된 나노급 실리콘 박막의 물성)

  • Shen, Yun;Sim, Gapseop;Choi, Yongyoon;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • 100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.

Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD) (Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Kwak, D.W.;Lee, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2007
  • We have demonstrated structural evolution and optical properties of the Si-NWs on Si (111) substrates with synthesized nanoscale Au-Si islands by rapid thermal chemical vapor deposition(RTCVD). Au nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. Si-NWs were grown by a mixture gas of $SiH_4\;and\;H_2$ at pressures of $0.1{\sim}1.0$Torr and temperatures of $450{\sim}650^{\circ}C$. SEM measurements showed the formation of Si-NWs well-aligned vertically for Si (111) surfaces. The resulting NWs are 30-100nm in diameter and $0.4{\sim}12um$ in length depending on growth conditions. HR-TEM measurements indicated that Si-NWs are single crystals convered with about 3nm thick layers of amorphous oxide. In addition, optical properties of NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si optical phonon peak with a shoulder at $480cm^{-1}$ were observed in Raman spectra of Si-NWs.

Field Emission Characteristics of Nitrogen-Doped and Micro-Patterned Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition

  • Shin, Ik-Ho;Lee, Taek-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.133-134
    • /
    • 2000
  • Effect of nitrogen doping on field emission characteristics of patterned Diamond-like Carbon (DLC) films was studied. The patterned DLC films were fabricated by the method reported previously[1]. Nitrogen doping in DLC film was carried out by introducing $N_2$ gas into the vacuum chamber during deposition. Higher emission current density of $0.3{\sim}0.4$ $mA/cm^2$ was observed for the films with 6 at % N than the undoped films but the emission current density decreased with further increase of N contents. Some changes in CN bonding characteristics with increasing N contents were observed. The CN bonding characteristics which seem to affect the electron emission properties of these films were studied by Raman spectroscopy, x-ray photoemission spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The electrical resistivity and the optical band gap measurements showed consistence with the above analyses.

  • PDF

Tribological Behavior of the Alumina Reinforced with Unidirectionally Oriented SiC whiskers (일방향성 배열을 가잔 SiC whisker에 의해 강화된 알루미나 복합체의 마모마찰 특성)

  • 간태석;임대순;한병동
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.25-29
    • /
    • 1998
  • Sliding wear test and surface characterization techniques such as micro-Raman spectroscopy were employed to determine the effect of whisker content and orientation on the friction and wear behavior of SiC whisker reinforced alumina. Composites containing unidirectionally oriented whiskers were fabricated by novel technique Addition of SiC whiskers up to 20 vol.% lowered the friction and improved wear resistance. The results of this study indicated that highly disordered graphite and size of the layer behind the whiskers were responsible for variation of wear rate and friction coefficient.

  • PDF