DOI QR코드

DOI QR Code

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition

Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구

  • Lee, Y.H. (Department of Information Communication Engeneering Dongguk University) ;
  • Kwak, D.W. (Department of Physics, Dongguk University) ;
  • Yang, W.C. (Department of Physics, Dongguk University) ;
  • Cho, H.Y. (Department of Physics, Dongguk University)
  • Published : 2008.01.30

Abstract

we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

나노크기의 Au-Si을 촉매로 급속열화학기상증착(rapid thermal chemical vapor deposition)법을 이용하여 Si(111) 기판에 성장한 Si 나노선의 구조적인 형태 변화와 광학적 특성을 연구하였다. 기상-액상-고상(vapor-liquid-solid) 성장법에 의한 Si 나노선 형성 과정에서 액상 입자인 Au-Si 나노점은 나노선 성장온도에서 촉매로 사용되었다. 이 액상 나노점이 형성된 Si 기판에 1.0Torr 압력과 $500-600^{\circ}C$ 기판 온도 하에서 $SiH_4$$H_2$의 혼합가스를 공급하여 Si 나노선을 형성하였다. Si 나노선 성장 후 형태를 전계방출 주사전자현미경(Field Emission Scanning Electron Microscope)으로 관찰한 결과, 대부분의 나노선이 균일한 크기로 기판 표면에 수직하게 <111> 방향으로 정렬된 것을 확인하였다. 형성된 나노선의 크기는 평균 직경이 ${\sim}60nm$이고 평균 길이가 ${\sim}5um$임을 확인하였다. 또한 고 분해능 투과전자현미경(High Resolution-Transmission Electron Microscope) 관찰을 통해 Si 나노선은 약 3nm의 비정질 산화층으로 둘러 싸여 있는 Si 단결정임이 분석되었다. 그리고 마이크로 라만 분광(Micro-Raman Scattering)법을 통한 광학적 특성 분석 결과, Si의 광학 포논(Optical Phonon) 신호 위치가 Si 나노선 구조의 영향으로 낮은 에너지 쪽으로 이동하며, Si 포논 신호의 폭이 비대칭적으로 증가함을 확인하였다.

Keywords

References

  1. A. P. Alivisatos, Science 271, 933 (1996) https://doi.org/10.1126/science.271.5251.933
  2. Y. Cui and C. M. Lieber, Science 291, 851 (2001) https://doi.org/10.1126/science.291.5505.851
  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003) https://doi.org/10.1002/adma.200390087
  4. D. Wang and H. Dai, Angew. Chem. 41, 4783 (2002) https://doi.org/10.1002/anie.200290047
  5. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature 420, 57 (2002) https://doi.org/10.1038/nature01141
  6. T. I. Kamins, X. Li, R. S. Williams, and X. Liu, Nano Lett. 4, 503 (2004) https://doi.org/10.1021/nl035166n
  7. T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001) https://doi.org/10.1063/1.1335640
  8. T. Hanrath and B. A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002) https://doi.org/10.1021/ja016788i
  9. M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza Filho, M. A. Pimenta, R. Saito, Ge. G. Samsonidze, G. Dresselhaus, Mater. Sci. Eng. C23, 129 (2003)
  10. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003) https://doi.org/10.1002/adma.200390087
  11. C. M. Lieber, MRS Bull. 28, 486 (2003) https://doi.org/10.1557/mrs2003.144
  12. S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003) https://doi.org/10.1063/1.1614432
  13. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997) https://doi.org/10.1116/1.589291
  14. T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2002) https://doi.org/10.1063/1.125852
  15. M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C. Dickey, Appl. Phys. Lett. 79, 1546 (2001) https://doi.org/10.1063/1.1401089
  16. V. Schmidt, S. Senz, and U. Gosele, Nano Lett. 5, 931 (2005) https://doi.org/10.1021/nl050462g
  17. E. I. Givargizov, J. Crystal Growth 31, 20 (1975) https://doi.org/10.1016/0022-0248(75)90105-0
  18. Y. Cui, L. J. Lauhon, M. S. Gudiksen, and J. Wang, Appl. Phys. Lett. 78, 2214 (2001) https://doi.org/10.1063/1.1363692
  19. Yiying Wu and Peidong Yang, J. Am. Chem. Soc. 123, 3165 (2001) https://doi.org/10.1021/ja0059084
  20. D. W. Kwak, H. Y. Cho, and W. -C. Yang, Physica E 37, 153 (2007) https://doi.org/10.1016/j.physe.2006.07.017
  21. R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, Phys. Rev. B 61, 16827 (2000) https://doi.org/10.1103/PhysRevB.61.16827
  22. P. Bruesch, Phonons: Theory and Experiments I - Lattice Dynamics and Models of Interatomic Forces (Springer, Berlin, 1982)
  23. N. Fukata, T. Oshima, K. Murakami, T. Kizuka, T. Tsurui, and S. Ito, Appl. Phys. Lett. 86, 213112 (2005) https://doi.org/10.1063/1.1931055