Browse > Article
http://dx.doi.org/10.5757/JKVS.2008.17.1.051

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition  

Lee, Y.H. (Department of Information Communication Engeneering Dongguk University)
Kwak, D.W. (Department of Physics, Dongguk University)
Yang, W.C. (Department of Physics, Dongguk University)
Cho, H.Y. (Department of Physics, Dongguk University)
Publication Information
Journal of the Korean Vacuum Society / v.17, no.1, 2008 , pp. 51-57 More about this Journal
Abstract
we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.
Keywords
RTCVD; Si-nanowire; Au-Si island; vapor-liquid-solid; micro-Raman spectroscopy; optical phonon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003)   DOI   ScienceOn
2 M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza Filho, M. A. Pimenta, R. Saito, Ge. G. Samsonidze, G. Dresselhaus, Mater. Sci. Eng. C23, 129 (2003)
3 C. M. Lieber, MRS Bull. 28, 486 (2003)   DOI   ScienceOn
4 V. Schmidt, S. Senz, and U. Gosele, Nano Lett. 5, 931 (2005)   DOI   ScienceOn
5 Y. Cui, L. J. Lauhon, M. S. Gudiksen, and J. Wang, Appl. Phys. Lett. 78, 2214 (2001)   DOI   ScienceOn
6 Yiying Wu and Peidong Yang, J. Am. Chem. Soc. 123, 3165 (2001)   DOI   ScienceOn
7 D. W. Kwak, H. Y. Cho, and W. -C. Yang, Physica E 37, 153 (2007)   DOI   ScienceOn
8 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997)   DOI   ScienceOn
9 S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003)   DOI   ScienceOn
10 L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature 420, 57 (2002)   DOI   ScienceOn
11 N. Fukata, T. Oshima, K. Murakami, T. Kizuka, T. Tsurui, and S. Ito, Appl. Phys. Lett. 86, 213112 (2005)   DOI   ScienceOn
12 T. I. Kamins, X. Li, R. S. Williams, and X. Liu, Nano Lett. 4, 503 (2004)   DOI   ScienceOn
13 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003)   DOI   ScienceOn
14 T. Hanrath and B. A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002)   DOI   ScienceOn
15 A. P. Alivisatos, Science 271, 933 (1996)   DOI   ScienceOn
16 T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001)   DOI   ScienceOn
17 Y. Cui and C. M. Lieber, Science 291, 851 (2001)   DOI   ScienceOn
18 R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, Phys. Rev. B 61, 16827 (2000)   DOI   ScienceOn
19 T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2002)   DOI   ScienceOn
20 M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C. Dickey, Appl. Phys. Lett. 79, 1546 (2001)   DOI   ScienceOn
21 P. Bruesch, Phonons: Theory and Experiments I - Lattice Dynamics and Models of Interatomic Forces (Springer, Berlin, 1982)
22 E. I. Givargizov, J. Crystal Growth 31, 20 (1975)   DOI   ScienceOn
23 D. Wang and H. Dai, Angew. Chem. 41, 4783 (2002)   DOI   ScienceOn