Browse > Article
http://dx.doi.org/10.12989/anr.2022.13.5.437

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles  

Arora, Shefali (Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES))
Nandy, Subhajit (Advanced Analysis Center, Korea Institute of Science and Technology)
Latwal, Mamta (Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES))
Pandey, Ganesh (School of Agriculture, Dev Bhoomi Uttarakhand University)
Singh, Jitendra P. (Department of Physics, Manav Rachna University)
Chae, Keun H. (Advanced Analysis Center, Korea Institute of Science and Technology)
Publication Information
Advances in nano research / v.13, no.5, 2022 , pp. 437-451 More about this Journal
Abstract
Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.
Keywords
cation occupancy; spectroscopy techniques; synthesis; zinc ferrite nanoparticles;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Ahmed, M.A., Ateia, E. and El-Dek, S.I. (2002), "Spectroscopic analysis of ferrite doped with different rare earth elements", Vib. Spectrosc., 30(1), 69-75. https://doi.org/10.1016/S0924-2031(02)00040-1.   DOI
2 Ahn, Y., Choi, E.J., Kim, S., An, D.H., Kang, K.U., Lee, B.G., Baek, K.S. and Oak, H.N. (2002), "Magnetization and Mossbauer study of nanosize ZnFe2O4 particles synthesized by using a microemulsion method", J. Korean Phys. Soc., 41(1), 123-128.
3 Gilani, Z.A., Anjum, M.N., Shifa, S., Asghar, H.M.N.U.H.K., Rehman, J.U., Usmani, M.N., Aslam, S., Khan, M.A., Shahid, M. and Warsi, M.F. (2017), "Morphological and magnetic behavior of neodymium doped LiNi0.5Fe2O4 nanocrystalline ferrites prepared via micro-emulsion technique", Digest J. Nanomater. Biostruct., 12(1), 223-228. https://doi.org/10.1023/A:1010004616528.   DOI
4 Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015), "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111. http://doi.org/10.12989/anr.2015.3.2.111.   DOI
5 Giridhar, M., Naik, H.S.B., Sudhamani, C.N., Prabakara, M.C., Kenchappa, R., Venugopal, N. and Patil, S. (2020), "Microwave-assisted synthesis of water-soluble styrylpyridine dye-capped zinc oxide nanoparticles for antibacterial applications", J. Chin. Chem. Soc., 67(2), 316-323. https://doi.org/10.1002/jccs.201900029.   DOI
6 Goswami, P.P., Choudhury, H.A., Chakma, S. and Moholkar, V.S. (2013a), "Sonochemical synthesis and characterization of manganese ferrite nanoparticles", Ind. Eng. Chem. Res., 52(50), 17848-17855. https://doi.org/10.1021/ie401919x.   DOI
7 Bao, N., Shen, L., Wang, Y., Padhan, P. and Gupta, A. (2007), "A facile thermolysis route to monodisperse ferrite nanocrystals", J. Am. Chem. Soc., 129(41), 12374-12375. https://doi.org/10.1021/ja074458d.   DOI
8 Parc, Y.W., Kim, C., Huang, J.Y. and Ko, I.S. (2009), "The coherency of synchrotron radiation at Pohang Accelerator Laboratory", J. Synchrotron Radiat., 16(5), 642-646. https://doi.org/10.1107/S0909049509024649.   DOI
9 Godbole, R., Rao, P. and Bhagwat, S. (2017), "Magnesium ferrite nanoparticles: A rapid gas sensor for alcohol", Mater. Res. Express, 4(2), 025032. https://doi.org/10.1088/2053-1591/aa5ec7.   DOI
10 Gokila, V., Perarasu, V. and Rufina, R.D.J. (2021), "Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles", Adv. Nano Res., 10(1), 71. http://doi.org/10.12989/anr.2021.10.1.071.   DOI
11 Grandjean, F. and Long, G.J. (2021), "Best practices and protocols in Mossbauer spectroscopy", Chem. Mater., 33(11), 3878-3904. https://doi.org/10.1021/acs.chemmater.1c00326.   DOI
12 Gul, S., Yousuf, M.A., Anwara, A., Warsi, M.F., Agboola, P.O., Shakir, I., Shahid, M. (2020), "Al-substituted zinc spinel ferrite nanoparticles: Preparation and evaluationof structural, electrical, magnetic and photocatalytic properties" Ceram. Int., 46(9), 14195-14205. https://doi.org/10.1016/j.ceramint.2020.02.228.   DOI
13 Chen, L., Dai, H., Shen, Y. and Bai, J. (2010), "Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route", J. Alloys Compd., 491(1), L33-L38. https://doi.org/10.1016/j.jallcom.2009.11.031.   DOI
14 Gomes, G.A., Costa, G.L.D. and da Silva Figueiredo, A.B.H. (2018), "Synthesis of ferrite nanoparticles Cu1-xAgxFe2O4 and evaluation of potential antibacterial activity", J. Mater. Res. Technol., 7(3), 381-386. https://doi.org/10.1016/j.jmrt.2018.04.021.   DOI
15 Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N. and Yao K. (2008), "Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor", Nanotechnology, 19(40), 405503. https://doi.org/10.1088/0957-4484/19/40/405503.   DOI
16 Parmar, H., Upadhyay, R.V., Rayaprol, S. and Siruguri, V. (2015), "Size induced inverse spins canting in CO-Zn system: Neutron diffraction and magnetic studies", J. Magn. Magn. Mater., 377, 133-136. https://doi.org/10.1016/j.jmmm.2014.10.071.   DOI
17 Patange, S.M., Shirsath, S.E., Jadhav, S.S., Lohar, K.S., Mane, D.R. and Jadhav, K.M. (2010), "Rietveld refinement and switching properties of Cr3+ substituted NiFe2O4 ferrites", Mater. Lett., 64(6), 722-724. https://doi.org/10.1016/j.matlet.2009.12.049.   DOI
18 Pemartin, K., Solans, C., Quintana, J.A. and Sanchez-Dominguez, M. (2014), "Synthesis of Mn-Zn ferrite nanoparticles by the oilin-water microemulsion reaction method", Colloids Surf. A Phys., 451, 161-171. https://doi.org/10.1016/j.colsurfa.2014.03.036.   DOI
19 Peng, Y., Xia, C., Cui, M., Yao, Z. and Yi, X. (2021), "Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation", Ultrasonics Sonochem., 71, 105369. https://doi.org/10.1016/j.ultsonch.2020.105369.   DOI
20 Chen, D. and Zhang, Y.Z. (2012), "Synthesis of NiFe2O4 nanoparticles by a low temperature microwave-assisted ball milling technique", Sci. China Technol. Sci., 55(6), 1535-1538. https://doi.org/10.1007/S11431-012-4772-2.   DOI
21 Chipaux, R. (1990), "MOSPLV, a program for simulation of complex Mossbauer spectra in polycrystalline samples", Comput. Phys. Commun., 60(3), 405-415. https://doi.org/10.1016/0010-4655(90)90037-2.   DOI
22 Cohen, R.L. (1976), Elements of Mossbauer Spectroscopy, In Applications of Mossbauer spectroscopy, Academic Press: New York, U.S.A.
23 Hazra, S. and Ghosh, N. (2014), "Preparation of nanoferrites and their applications", J. Nanosci. Nanotechnol., 14, 1983-2000. https://doi.org/10.1166/jnn.2014.8745.   DOI
24 Gomes, J.A., Azevedo, G.M., Depeyrot, J., Mestnik-Filho, J., da Silva, G.J., Tourinho, F.A. and Perzynski, R. (2011), "ZnFe2O4 nanoparticles for ferrofluids: a combined XANES and XRD study", J. Magn. Magn. Mater., 323(10), 1203-1206. https://doi.org/10.1016/j.jmmm.2010.11.006.   DOI
25 Goswami, P. P., Choudhury, H. A., Chakma, S. and Moholkar, V. S. (2013b), "Sonochemical synthesis of cobalt ferrite nanoparticles", Int. J. Chem. Eng., 2013, 1-6. https://doi.org/10.1155/2013/934234.   DOI
26 Hammad, A., Hemdan, B. and Elnahrawy, A. (2020), "Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment", J. Environ. Manag., 270, 110816. https://doi.org/10.1016/j.jenvman.2020.110816.   DOI
27 Gao, J., Gu, H. and Xu, B. (2009), "Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications", Accounts Chem. Res., 42(8), 1097-1107. https://doi.org/10.1021/ar9000026.   DOI
28 El Moussaoui, H., Mahfoud, T., Habouti, S., El Maalam, K., Ali, B.M., Hamedoun, M., Mounkachi, O., Masrour, R., Hlil, E.K. and Benyoussef, A. (2016), "Synthesis and magnetic properties of tin spinel ferrites doped manganese", J. Magn. Magn. Mater., 405, 181-186. https://doi.org/10.1016/j.jmmm.2015.12.059.   DOI
29 Fox, M. and Bertsch, G.F. (2002), "Optical properties of solids", Am. Assoc. Phys. Teachers, 70, 1269.
30 Gan, Y.X., Jayatissa, A.H., Yu, Z., Chen, X. and Li, M. (2020), "Hydrothermal synthesis of nanomaterials", J. Nanomater., 2020, 8917013. https://doi.org/10.1155/2020/8917013.   DOI
31 Basu, S., Nayak, C., Yadav, A.K., Agrawal, A., Poswal, A.K. Bhattacharyya, D., Jha, S.N. and Sahoo, N.K. (2014), "A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT, Indore, India", J. Phys., 493, 012032.
32 Bilecka, I., Kubli, Amstad, M. E. and Niederberger, M. (2011), "Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol-gel process", J. Sol-Gel Sci. Technol., 57, 313-322. https://doi.org/10.1007/s10971-010-2165-1.   DOI
33 Khalili, P. and Farahmandjou, M. (2020), "Nanofabrication of zinc ferrite (ZnFe2O4) composites for biomedical application", Challenges Nano Micro Scale Sci. Technol., 8(2), 89-98. https://doi.org/10.22111/tpnms.2020.35902.1199.   DOI
34 Ito, A., Shinkai, M., Honda, H. and Kobayashi, T. (2005), "Medical application of functionalized magnetic nanoparticles", J. Biosci. Bioeng., 100(1), 1-11. https://doi.org/10.1263/jbb.100.1   DOI
35 Joshi, G.P., Saxena, N.S., Mangal, R., Mishra, A. and Sharma, T.P. (2003), "Band gap determination of Ni-Zn ferrites", Bull. Mater. Sci., 26(4), 387-389. https://doi.org/10.1007/BF02711181.   DOI
36 Kefeni, K.K., Msagati, T.A.M. and Mamba, B.B. (2017), "Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device", Mater. Sci. Eng. B, 215, 37-55. https://doi.org/10.1016/j.mseb.2016.11.002.   DOI
37 Carta, D., Casula, M.F., Mountjoy, G. and Corrias, A. (2008a), "Formation and cation distribution in supported manganese ferrite nanoparticles: An x-ray absorption study", Phys. Chem. Chem. Phys., 10(21), 3108-3117. https://doi.org/10.1039/B800359A.   DOI
38 Abbasian, A., Hosseini, S., Shayesteh, M., Shafiee, M. and Esmaeilzaei M.R. (2020), "Ultrasonic-assisted solvothermal synthesis of self-assembled copper ferrite nanoparticles", Int. J. Nano Dimension, 11(2), 130-144.
39 Singh, J.P., Srivastava, R.C., Agrawal, H.M., Chand, P. and Kumar, R. (2011a), "Observation of size dependent attributes on the magnetic resonance of irradiated zinc ferrite nanoparticles", Curr. Appl. Phys., 11(3), 532-537. https://doi.org/10.1016/j.cap.2010.09.009.   DOI
40 Calvin, S., Carpenter, E.E. , Ravel, B., Harris, V.G. and Morrison, S.A. (2002), "Multiedge refinement of extended x-rayabsorption fine structure of manganese zinc ferrite nanoparticles", Phys. Rev. B, 66(22), 224405. https://doi.org/10.1103/PhysRevB.66.224405.   DOI
41 Venkatesh, M., Kumar, G.S., Viji, S., Karthi, S. and Girija, E.K. (2016), "Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets", Modern Electr. Mater., 2(3), 74-78. https://doi.org/10.1016/j.moem.2016.10.003.   DOI
42 Urbach, F. (1953), "The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids", Phys. Rev., 92(5), 1324-1324. https://doi.org/10.1103/PhysRev.92.1324.   DOI
43 Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S. and Muthamizhchelvan, C. (2011), "Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties", Mater. Lett., 65(9), 1438-1440. https://doi.org/10.1016/j.matlet.2011.02.026.   DOI
44 Song, Q. and Zhang, Z.J. (2012), "Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture", J. Am. Chem. Soc., 134(24), 10182-10190. https://doi.org/10.1021/ja302856z.   DOI
45 Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., Molinie, P. and Danot, M. (2001), "Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium", J. Mater. Chem., 11(1), 186-192. https://doi.org/10.1039/B003193N.   DOI
46 Andhare, D.D., Jadhav, S.A., Khedkar, M.V., Somvanshi, S.B., More, S.D. and Jadhav, K.M. (2020), "Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique", J. Phys. Conference Series, 1644, 012014. https://doi.org/10.1088/1742-6596/1644/1/012014.   DOI
47 Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P. H. and Vioux, A. (1996), "Mixed oxides SiO2-ZrO2 and SiO2-TiO2 by a non-hydrolytic sol-gel route", J. Mater. Chem., 6(10), 1665-1671. https://doi.org/10.1039/JM9960601665.   DOI
48 Ushakov, M.V., Senthilkumar, B., Selvan, R.K., Felner, I. and Oshtrakh, M.I. (2017), "Mossbauer spectroscopy of NiFe2O4 nanoparticles: The effect of Ni2+ in the Fe3+ local microenvironment in both tetrahedral and octahedral sites", Mater. Chem. Phys., 202, 159-168. https://doi.org/10.1016/j.matchemphys.2017.09.011.   DOI
49 Su, M., He, C. and Shih, K. (2016), "Facile synthesis of morphology and size-controlled α-Fe2O3 and Fe3O4 nano-and microstructures by hydrothermal/solvothermal process: The roles of reaction medium and urea dose", Ceram. Int., 42(13), 14793-14804. https://doi.org/10.1016/j.ceramint.2016.06.111   DOI
50 Syahmazgi, M., Falamaki, C. and Lotfi, A. (2014), "A novel method for the synthesis of nano-magnetite particles", Adv. Nano Res., 2(2), 89-98. http://doi.org/10.12989/anr.2014.2.2.089.   DOI
51 Wang, Z., Lazor, P., Saxena, S.K. and Artioli, G. (2002), "Highpressure Raman spectroscopic study of spinel (ZnCr2O4)", J. Solid State Chem., 165(1), 165-170. https://doi.org/10.1006/jssc.2002.9527.   DOI
52 Yan, Z., Gao, J., Li, Y., Zhang, M. and Guo, M. (2015), "Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite", RSC Adv., 5(112), 92778-92787. https://doi.org/10.1039/C5RA17145H.   DOI
53 Yanez-Vilar, S., Sanchez-Andujar, M., Gomez-Aguirre C., Mira, J., Senaris-Rodriguez, M.A. and Castro-Garcia, S. (2009), "A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles", J. Solid State Chem., 182(10), 2685-2690. http://doi.org/10.1016/j.jssc.2009.07.028.   DOI
54 Singh, J.P., Dixit, G., Srivastava, R.C., Negi, P., Agrawal, H.M. and Kumar, R. (2013c), "HRTEM and FTIR investigation of nanosized zinc ferrite irradiated with 100 MeV oxygen ions", Spectrochimica Acta Part A, 107, 326-333. https://doi.org/10.1016/j.saa.2012.12.095.   DOI
55 Pereira, C., Pereira, A.M., Fernandes, C., Rocha, M., Mendes, R., Fernandez-Garcia, M.P., Guedes, A., Tavares, P.B., Greneche, J.M., Araujo, J.P. and Freire, C. (2012), "Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: Tuning the particle size and magnetic properties through a novel one-step coprecipitation route", Chem. Mater., 24(8), 1496-1504. https://doi.org/10.1021/cm300301c.   DOI
56 Springer, V., Pecini, E. and Avena, M. (2016), "Magnetic nickel ferrite nanoparticles for removal of dipyrone from aqueous solutions", J. Environ. Chem. Eng., 4(4), 3882-3890. https://doi.org/10.1016/j.jece.2016.08.026.   DOI
57 Stewart, S.J., Figueroa, S.J.A., Lopez, J.M.R., Marchetti, S.G., Bengoa, J.F., Prado, R.J. and Requejo, F.G. (2007), "Cationic exchange in nanosized ZnFe2O4 spinel revealed by experimental and simulated near-edge absorption structure", Phys. Rev. B, 75(7), 073408. https://doi.org/10.1103/PhysRevB.75.073408.   DOI
58 Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2013b), "Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam", J. Alloys Compd., 551, 370-375. https://doi.org/10.1016/j.jallcom.2012.10.006.   DOI
59 Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M., Reddy, V.R. and Gupta, A. (2012), "Observation of bulk like magnetic ordering below the blocking temperature in nanosized zinc ferrite", J. Magn. Magn. Mater., 324(16), 2553-2559. https://doi.org/10.1016/j.jmmm.2012.03.045.   DOI
60 Singh, J.P., Kim, S.H., Won, S.O., Lim, W.C., Lee, I.J. and Chae, K.H. (2016), "Covalency, hybridization and valence state effects in nano- and micro-sized ZnFe2O4", CrystEngComm, 18(15), 2701-2711. https://doi.org/10.1039/C5CE02461G.   DOI
61 Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2011b), "100 MeV O7+ ion irradiation in nanosized zinc ferrite", Radiat. Effects Defects Solids, 166(8-9), 564-570. https://doi.org/10.1080/10420150.2011.553233.   DOI
62 Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Kumar, R. (2011c), "Micro-Raman investigation of nanosized zinc ferrite: Effect of crystallite size and fluence of irradiation", J. Raman Spectrosc., 42(7), 1510-1517. https://doi.org/10.1002/jrs.2902   DOI
63 Tang, Y., Wang, X., Zhang, Q., Li, Y. and Wang, H. (2012), "Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection", Prog. Natural Sci. Mater. Int., 22(1), 53-58. https://doi.org/10.1016/j.pnsc.2011.12.009.   DOI
64 Hashhash, A., Bobrikov, I., Yehia, M., Kaiser, M. and Uyanga, E. (2020), "Neutron diffraction and Mossbauer spectroscopy studies for Ce doped CoFe2O4 nanoparticles", J. Magn. Magn. Mater., 503, 166624. https://doi.org/10.1016/j.jmmm.2020.166624.   DOI
65 Hayek, S.S. (2019), "Synthesis and characterization of CeGdZnferrite nanoparticles as magnetic hyperthermia application agents", Adv. Mater. Sci. Eng., 4868506. https://doi.org/10.1155/2019/4868506.   DOI
66 Anupriya, J., Babulal, S.M., Chen, T.W., Chen, S.M., Kumar, J.V., Lee, J.W., Rwei, S.P., Yu, J., Yu, R. and Hong, C.Y. (2021), "Facile hydrothermal synthesis of cubic zinc ferrite nanoparticles for electrochemical detection of antiinflammatory drug nimesulide in biological and pharmaceutical sample", Int. J. Electrochem. Sci., 16, 1-19. https://doi.org/10.20964/2021.07.72.   DOI
67 Aquilanti, G., Vaccari, L., Plaisier, J.R. and Goldoni, A. (2015), Instrumentation at Synchrotron Radiation Beamlines, In Synchrotron Radiation: Basics, Methods and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg.
68 Yao, T., Qi, Y., Mei, Y., Yang, Y., Aleisa, R., Tong, X. and Wu, J. (2019), "One-step preparation of reduced graphene oxide aerogel loaded with mesoporous copper ferrite nanocubes: a highly efficient catalyst in microwave-assisted Fenton reaction", J. Hazard. Mater., 378, 120712. https://doi.org/10.1016/j.jhazmat.2019.05.105.   DOI
69 Tadjarodi, A., Imani, M. and Salehi, M. (2015), "ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water", RSC Adv., 5(69), 56145-56156. https://doi.org/10.1039/C5RA02163D.   DOI
70 Tanaka, K., Nakashima, S., Fujita, K. and Hirao, K. (2006), "Large Faraday effect in a short wavelength range for disordered zinc ferrite thin films", J. Appl. Phys., 99(10), 106103. https://doi.org/10.1063/1.2199727.   DOI
71 Tauc, J. (1974), Optical Properties of Amorphous Semiconductors, In Amorphous and Liquid Semiconductors, Springer Boston, MA, U.S.A.
72 Tauc, J. and Menth, A. (1972), "States in the gap", J. Non Cryst. Solids, 8-10, 569-585. https://doi.org/10.1016/0022-3093(72)90194-9.   DOI
73 Thota, S., Kashyap, S.C., Sharma, S.K. and Reddy, V.R. (2016), "Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn", J. Phys. Chem. Solids, 91, 136-144. https://doi.org/10.1016/j.jpcs.2015.12.013.   DOI
74 Ramachandran, T. and Vishista, K. (2014), "N-N-methylene bis acrylamide: A novel fuel for combustion synthesis of zinc ferrite nanoparticles and studied by x-ray photoelectron spectroscopy", Int. J. ChemTech Res., 6(5), 2834-2842.
75 Pouponneau, P., Leroux, J.C. and Martel, S. (2009), "Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization", Biomater., 30(31), 6327-6332. https://doi.org/10.1016/j.biomaterials.2009.08.005.   DOI
76 Rahman, A. Aadil, M., Akhtar, M., Warsi, M.F., Jamil, A., Shakir, I., Shahid, M. (2020), "Magnetically recyclable Ni1-xCdxCeyFe2-yO4-rGO nanocomposite photocatalyst for visible light driven photocatalysis", Ceram. Int., 46(9), 13517-13526. https://doi.org/10.1016/j.ceramint.2020.02.136.   DOI
77 Rai, R.S. and Bajpai, V. (2021), "Recent advances in ZnO nanostructures and their future perspective", Adv. Nano Res., 11(1), 37-54. http://doi.org/10.12989/anr.2021.11.1.037.   DOI
78 Rashdan, S.A. and Hazeem, L.J. (2020), "Synthesis of spinel ferrites nanoparticles and investigating their effect on the growth of microalgae Picochlorum sp", Arab J. Basic Appl. Sci., 27(1), 134-141. https://doi.org/10.1080/25765299.2020.1733174.   DOI
79 Ravel, B. and Newville, M. (2005), "ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT", J. Synchrotr. Radiat., 12(4), 537-541. https://doi.org/10.1107/S0909049505012719.   DOI
80 Singh, J.P., Srivastava, R.C., Agrawal, H.M., Kushwaha, R.P.S., Chand, P. and Kumar, R. (2008), "EPR study of nanostructured zinc ferrite", Int. J. Nanosci., 07(1), 21-27. https://doi.org/10.1142/s0219581x08005146.   DOI
81 Singh, R.S., Kuritka, I., Vilcakova, J., Jamatia, T., Machovsky, M., Skoda, D., Urbanek, P., Masar, M., Urbanek, M., Kalina, L. and Havlica, J. (2020), "Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles", Ultrasonics Sonochem., 61, 104839. https://doi.org/10.1016/j.ultsonch.2019.104839.   DOI
82 Singh, J.P., Lee, B.H., Lim, W.C., Shim, C.H., Lee, J. and Chae, K. H. (2018), "Microstructure, local electronic structure and optical behaviour of zinc ferrite thin films on glass substrate", Royal Soc. Open Sci., 5(10), 181330. https://doi.org/10.1098/rsos.181330.   DOI
83 Singh, J.P., Srivastava, R.C. and Agrawal, H.M. (2010), "Optical behaviour of zinc ferrite nanoparticles", AIP Conference Proceedings, 1276(1), 137-143. https://doi.org/10.1063/1.3504278.   DOI
84 Singh, J.P., Srivastava, R.C., Agrawal, H.M. and Chand, P. (2009), "Relaxation phenomena in nanostructured zinc ferrite", Int. J. Nanosci., 08(6), 523-531. https://doi.org/10.1142/s0219581x09006456.   DOI
85 Sivakumar, M., Towata, A., Yasui, K., Tuziuti, T. and Iida, Y. (2006), "A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals", Curr. Appl. Phys., 6(3), 591-593. https://doi.org/10.1016/j.cap.2005.11.068.   DOI
86 Bhide, V.G. (1973), Mossbauer Effect and Its Applications, Tata McGraw-Hill Pub. Co., New Delhi, India.
87 Henderson, C.M.B., Charnock, J.M. and Plant, D.A. (2007), "Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: A multi-element EXAFS study", J. Phys. Condens. Matter, 19(7), 076214. https://doi.org/10.1088/0953-8984/19/7/076214   DOI
88 Islam, K., Haque, M., Kumar, A., Hoq, A., Hyder, F. and Hoque, S. M. (2020), "Manganese ferrite nanoparticles (MnFe2O4): Size dependence for hyperthermia and negative/positive contrast enhancement in MRI", Nanomater., 10(11), 2297. https://doi.org/10.3390/nano10112297.   DOI
89 Johnson, M., Gaffney, C., White, V., Bechelli, J., Balaraman, R. and Trad, T. (2020), "Non-hydrolytic synthesis of caprylate capped cobalt ferrite nanoparticles and their application against Erwinia carotovora and Stenotrophomonas maltophilia", J. Mater. Chem. B, 8(47), 10845-10853. https://doi.org/10.1039/D0TB02283G.   DOI
90 Asab, G., Zereffa, E. A. and Seghne, T. A. (2020), "Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity", Int. J. Biomater., 2020, 1-11. https://doi.org/10.1155/2020/4783612   DOI
91 Busca, G., Lorentzelle, V., Ramis, G. and Willey, R.J. (1993), Langmuir, 9, 1402.
92 Carta, D., Loche, D., Mountjoy, G., Navarra, G. and Corrias, A. (2008b), "NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an x-ray absorption study", J. Phys. Chem. C, 112(40), 15623-15630. https://doi.org/10.1021/jp803982k.   DOI
93 Chinnasamy, C.N., Yang, A., Yoon, S.D., Hsu, K., Shultz, M.D., Carpenter, E.E., Mukerjee, S., Vittoria, C. and Harris, V.G. (2007), "Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles", J. Appl. Phys., 101(9), 09M509. https://doi.org/10.1063/1.2710218.   DOI
94 Darwish, M.S., Kim, H., Lee, H., Ryu, C., Lee, J.Y. and Yoon, J. (2019), "Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method", Nanomaterials, 9(8), 1176. https://doi.org/10.3390/nano9081176.   DOI
95 Fraas, L.M. and Moore, J.E. (1972), "Raman selection rule violation for a spinel crystal", Rev. Bras. Educ. Fis., 2(3), 299.
96 Gatelyte, A., Jasaitis, D., Beganskiene, A. and Kareiva, A. (2011), "Sol-gel synthesis and characterization of selected transition metal nano-ferrites", Mater. Sci., 17(3), 302-307. https://doi.org/10.5755/j01.ms.17.3.598.   DOI
97 Upadhyay, C., Verma, H.C., Sathe, V. and Pimpale, A.V. (2007), "Effect of size and synthesis route on the magnetic properties of chemically prepared nanosize ZnFe2O4", J. Magn. Magn. Mater., 312(2), 271-279. https://doi.org/10.1016/j.jmmm.2006.10.448.   DOI
98 Todaka, Y., Nakamura, M., Hattori, S., Tsuchiya, K. and Umemoto, M. (2003), "Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill", Mater. Transact., 44(2), 277-284. https://doi.org/10.2320/matertrans.44.277.   DOI
99 Torres, I.Z., Dominguez, A.S., Bueno, J.J.P. and Lopez, M.L.M. (2021), "Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes", Adv. Nano Res., 10(3), 211-219. https://doi.org/10.12989/anr.2021.10.3.211.   DOI
100 Upadhyay, C. and Verma, H.C. (2004), "Anomalous change in electron density at nuclear sites in nanosize zinc ferrite", Appl. Phys. Lett., 85(11), 2074-2076. https://doi.org/10.1063/1.1786368.   DOI
101 Zeng, Y., Zhu, X., Xie, J. and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi.org/10.12989/anr.2021.10.3.295   DOI
102 Sivakumar, M., Towata, A., Yasui, K., Tuziuti, T., Kozuka, T., Iida, Y., Maiorov, M.M., Blums, E., Bhattacharya, D., Sivakumar, N. and Ashok, M. (2012), "Ultrasonic cavitation induced water in vegetable oil emulsion droplets - a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization", Ultrasonics Sonochem., 19(3), 652-658. https://doi.org/10.1016/j.ultsonch.2011.10.015.   DOI
103 Muret, P. (1974), "Optical absorption in polycrystalline thin films of magnetite at room temperature", Solid State Commun., 14(11), 1119-1122. https://doi.org/10.1016/0038-1098(74)90286-5.   DOI
104 Murphy, D.M. (2008), EPR (Electron Paramagnetic Resonance) Spectroscopy of Polycrystalline Oxide Systems, In Metal Oxide Catalysis, Wiley-VCH: Strauss GmbH, Morlenbach, 1, 1-50.
105 Nachbaur, V., Tauvel, G., Verdier, T., Jean, M., Juraszek, J. and Houvet, D. (2009), "Mecanosynthesis of partially inverted zinc ferrite", J. Alloys Compd., 473(1), 303-307. https://doi.org/10.1016/j.jallcom.2008.05.066.   DOI
106 Nakashima, S., Fujita, K., Tanaka, K., Hirao, K., Yamamoto, T. and Tanaka I. (2007), "First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution", Phys. Rev. B, 75(17), 174443. https://doi.org/10.1103/PhysRevB.75.174443.   DOI
107 Yin, Y., Liu, W., Huo, N. and Yang, S. (2017), "Synthesis of vesicle-like MgFe2O4/graphene 3D network anode material with enhanced lithium storage performance", ACS Sust. Chem. Eng., 5(1), 563-570. https://doi.org/10.1021/acssuschemeng.6b01949   DOI
108 Yu, S.H., Wang, Q.L., Chen, Y., Wang, Y. and Wang, J.H. (2020), "Microwave-assisted synthesis of spinel ferrite nanospherolites", Mater. Lett., 278, 128431. https://doi.org/10.1016/j.matlet.2020.128431.   DOI
109 Zhang, L. and Wu, Y. (2013), "Sol-gel synthesized magnetic MnFe2O4 spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange", J. Nanomater., 1-6. https://doi.org/10.1155/2013/640940.   DOI
110 Scano, A., Cabras, V., Pilloni, M. and Ennas, G. (2019), "Microemulsions: The renaissance of ferrite nanoparticle synthesis", J. Nanosci. Nanotechnol., 19(8), 4824-4838. https://doi.org/10.1166/jnn.2019.16876.   DOI
111 Olsson, R.T., Alvarez, G.S., Hedenqvist, M.S., Gedde, U.W., Lindberg, F. and Savage, S. J. (2005), "Controlled synthesis of near-stoichiometric cobalt ferrite nanoparticles", Chem. Mater., 17(20), 5109-5118. https://doi.org/10.1021/cm0501665.   DOI
112 Nassar, M.Y. and Khatab, M. (2016), "Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nanoadsorbent for potential textile dye removal", RSC Adv., 6(83), 79688-79705. https://doi.org/10.1039/C6RA12852A.   DOI
113 Ni, D., Lin, Z., Xiaoling, P., Xinqing, W. and Hongliang, G. (2015), "Preparation and characterization of nickel-zinc ferrites by a solvothermal method", Rare Metal Mater. Eng., 44(9), 2126-2131. https://doi.org/10.1016/S1875-5372(16)30010-8.   DOI
114 Oliver, S.A., Harris, V.G., Hamdeh, H.H. and Ho, J.C. (2000), "Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders", Appl. Phys. Lett., 76(19), 2761-2763. https://doi.org/10.1063/1.126467.   DOI
115 Pal, U., Madrid, U.S., and Jesus, F.D. (2014), "Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process", Adv. Nano Res., 2(4), 187-198. http://doi.org/10.12989/anr.2014.2.4.187.   DOI
116 Palla, B.J., Shah, D., Casillas, P.E.G. and Matutes-Aquino, J.A. (1999), "Preparation of nanoparticles of barium ferrite from precipitation in microemulsions", J. Nanoparticle Res., 1, 215-221. https://doi.org/10.1023/A:1010004616528.   DOI
117 Pang, Y.L., Lim, S., Ong, H.C. and Chong, W.T. (2016), "Research progress on iron oxide-based magnetic materials: Synthesis techniques and photocatalytic applications", Ceram. Int., 42(1), 9-34. https://doi.org/10.1016/j.ceramint.2015.08.144.   DOI
118 Zhi-hao, Y., Wei, Y., Jun-hui, J. and Li-de, Z. (2008), "Optical absorption red shift of capped ZnFe2O4 nanoparticle", Chinese Phys. Lett., 15(7), 535. https://doi.org/10.1088/0256-307X/15/7/024.   DOI
119 Akhtar, M.J., Nadeem, M., Javaid, S. and Atif, M. (2009), "Cation distribution in nanocrystalline ZnFe2O4 investigated using x-ray absorption fine structure spectroscopy", J. Phys. Condens. Matter, 21(40), 405303. https://doi.org/10.1088/0953-8984/21/40/405303.   DOI
120 Allaedini, G., Tasirin, S. M. and Aminayi, P. (2015), "Magnetic properties of cobalt ferrite synthesized by hydrothermal method", Int. Nano Lett., 5(4), 183-186. https://doi.org/10.1007/s40089-015-0153-8.   DOI
121 Shirsath, S., Wang, D., Jadhav, S., Mane, M. and Li, S. (2017), Ferrites Obtained by Sol-Gel Method, In Handbook of Sol-Gel Science and Technology, Springer, Cham.
122 Schmitt-Rink, S., Miller, D.A.B. and Chemla, D.S. (1987), "Theory of the linear and nonlinear optical properties of semiconductor microcrystallites", Phys. Rev. B, 35(15), 8113-8125. https://doi.org/10.1103/PhysRevB.35.8113.   DOI
123 Sharma, A., Singh, J., Won, S.O., Chae, K.H., Sharma, S.K. and Kumar, S. (2018), Introduction to X-Ray Absorption Spectroscopy and Its Applications in Material Science, In Handbook of Materials Characterization, Springer International Publishing.
124 Sharma, R., Bansal, S. and Singhal, S. (2015), "Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure", RSC Advances, 5(8), 6006-6018. https://doi.org/10.1039/C4RA13692F.   DOI
125 Singh, J., Dixit, G., Srivastava, R., Kumar, H. and Agrawal, H. (2013a), "Magnetic resonance in superparamagnetic zinc ferrite", Bull. Mater. Sci., 36(4), 751-754. https://doi.org/10.1007/s12034-013-0528-2.   DOI
126 Singh, J.P., Dixit, G., Pandey, K., Kumar, H., Srivastava, R.C., Agrawal, H.M. and Asokan, K. (2014), "Spin dynamics investigation in nanosized zinc ferrite irradiated with 200 MeV Ag15+ ions", Mater. Lett., 122, 277-280. https://doi.org/10.1016/j.matlet.2014.02.019.   DOI
127 Sathiyamurthy, K., Rajeevgandhi, C., Bharanidharan, S., Sugumar, P. and Bose, S. (2020), "Electrochemical and magnetic properties of zinc ferrite nanoparticles through chemical coprecipitation method", Chem. Data Collect., 28, 100477. https://doi.org/10.1016/j.cdc.2020.100477.   DOI
128 Li, Z., Gao, K., Han, G., Wang, R., Li, H., Zhao, X. and Guo, P. (2015), "Solvothermal synthesis of MnFe2O4 colloidal nanocrystal assemblies and their magnetic and electrocatalytic properties", New J. Chem., 39(1), 361-368. https://doi.org/10.1039/C4NJ01466A.   DOI
129 Li, H., Wu, H.Z. and Xiao, G.X. (2010), "Effects of synthetic conditions on particle size and magnetic properties of NiFe2O4", Powder Technol., 198(1), 157-166. https://doi.org/10.1016/j.powtec.2009.11.005.   DOI
130 Li, W., Lee, S.S., Wu, J., Hinton, C.H. and Fortner, J.D. (2016), "Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes", Nanotechnology, 27(32), 324002. https://doi.org/10.1088/0957-4484/27/32/324002.   DOI
131 Ma, J., Chen, B., Chen, B. and Zhang, S. (2017), "Preparation of superparamagnetic ZnFe2O4 submicrospheres via a solvothermal method", Adv. Nano Res., 5(2), 171-178. https://doi.org/10.12989/anr.2017.5.2.171.   DOI
132 Manova, E., Kunev, B., Paneva, D., Mitov, I., Petrov, L., Estournes, C., D'Orlean, C., Rehspringer, J.L. and Kurmoo, M. (2004), "Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4", Chem. Mater., 16(26), 5689-5696. https://doi.org/10.1021/cm049189u.   DOI
133 Marinca, T., Chicinas, I. and Isnard, O. (2012), "Synthesis, structural and magnetic characterization of nanocrystalline CuFe2O4 as obtained by a combined method reactive milling, heat treatment and ball milling", Ceram. Int., 38(3), 1951-1957. https://doi.org/10.1016/j.ceramint.2011.10.026.   DOI
134 Marinca, T.F., Chicinas, I., Isnard, O., Pop, V. and Popa, F. (2011), "Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite-NiFe2O4 obtained by reactive milling", J. Alloys Compd., 509(30), 7931-7936. https://doi.org/10.1016/j.jallcom.2011.05.040.   DOI
135 Matsnev, M.E. and Rusakov, V.S. (2012), "SpectrRelax: an application for Mossbauer spectra modeling and fitting", AIP Conference Proceedings, 1489(1), 178-185. https://doi.org/10.1063/1.4759488.   DOI
136 Kumar, H., Singh, J., Srivastava, R., Patel, K. and Chae, K.H. (2017), "Synthesis and characterization of DyxCoFe2-xO4 nanoparticles", Superlatt. Microstruct., 109, 296-306. https://doi.org/10.1016/j.spmi.2017.05.001.   DOI
137 Jesudoss, S.K., Vijaya, J.J., Kennedy, L.J., Rajan, P.I., Al-Lohedan, H.A., Ramalingam, R.J., Kaviyarasu, K. and Bououdina, M. (2016), "Studies on the efficient dual performance of Mn1-xNixFe2O4 spinel nanoparticles in photodegradation and antibacterial activity", J. Photochem. Photobiol. B, 165, 121-132. https://doi.org/10.1016/j.jphotobiol.2016.10.004.   DOI
138 Kadyrzhanov, K.K., Egizbek, K., Kozlovskiy, A.L. and Zdorovets, M.V. (2019), "Synthesis and properties of ferrite-based nanoparticles", Nanomaterials, 9(8), 1079. https://doi.org/10.3390/nano9081079.   DOI
139 Kim, W. and Saito, F. (2001), "Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3", Powder Technol., 114(1-3), 12-16. https://doi.org/10.1016/S0032-5910(00)00256-4.   DOI
140 Klencsar, Z., Kuzmann, E. and Vertes, A. (1996), "User-friendly software for Mossbauer spectrum analysis", J. Radioanal. Nuclear Chem., 210(1), 105-118. https://doi.org/10.1007/BF02055410.   DOI
141 Kumar, H., Srivastava, R.C., Singh, J.P., Negi, P., Agrawal, H.M., Das, D. and Chae, K.H. (2016), "Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles", J. Magn. Magn. Mater., 401, 16-21. https://doi.org/10.1016/j.jmmm.2015.09.077.   DOI
142 Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. https://doi.org/10.12989/anr.2016.4.1.001.   DOI
143 Mukhtar, M.W., Irfan, M., Ahmad, I., Ali, I., Akhtar, M.N., Khan, M.A., Abbas, G., Rana, M.U., Ali, A. and Ahmad M. (2015), "Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications", J. Magn. Magn. Mater., 381, 173-178. https://doi.org/10.1016/j.jmmm.2014.12.072.   DOI
144 Munir, S., Rasheed, A., Zulfiqar, S., Aadil, M., Agboola, P.O., Shakir, I., Warsi, M.F. (2020)," Synthesis, characterization and photocatalytic parameters investigation of a new CuFe2O4/Bi2O3 nanocomposite", Ceram. Int., 46 (18A), 29182-29190. https://doi.org/10.1016/j.ceramint.2020.08.091.   DOI
145 Morales-Flores, N., Galeazzi, R., Rosendo, E., Diaz, T. and Pal, U. (2013), "Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis", Adv. Nano Res., 1(1), 59-70. http://doi.org/10.12989/anr.2013.1.1.059.   DOI
146 Mozaffari, M. and Masoudi, H. (2014), "Zinc ferrite nanoparticles: New preparation method and magnetic properties", J. Superconduct. Novel Magn., 27(11), 2563-2567. https://doi.org/10.1007/s10948-014-2625-x.   DOI
147 Kozakova, Z., Kuritka, I., Bazant, P., Machovsky, M., Pastorek, M., Babayan, V. and Ltd, T. (2012), "Simple and effective preparation of cobalt ferrite nanoparticles by microwaveassisted solvothermal method", Proceedings of the 4th International Conference, Brno, Czech republic.
148 Reddy, D.H.K. and Yun, Y.S. (2016), "Spinel ferrite magnetic adsorbents: alternative future materials for water purification?", Coordinat. Chem. Rev., 315, 90-111. https://doi.org/10.1016/j.ccr.2016.01.012.   DOI
149 Sagadevan, S., Chowdhury, Z.Z. and Rafique, R.F. (2018), "Preparation and characterization of nickel ferrite nanoparticles via co-precipitation method", Mater. Res., 21(2), 1-5. https://doi.org/10.1590/1980-5373-MR-2016-0533.   DOI
150 Kharisov, B.I., Dias, H.V.R. and Kharissova, O.V. (2019), "Minireview: Ferrite nanoparticles in the catalysis", Arab. J. Chem., 12(7), 1234-1246. https://doi.org/10.1016/j.arabjc.2014.10.049.   DOI
151 Kumar, M., Dosanjh, H.S., Sonika, Singh, J., Monir, K. and Singh, H. (2020), "Review on magnetic nanoferrites and their composites as alternatives in waste water treatment: synthesis, modifications and applications", Environ. Sci. Water Res. Technol., 6(3), 491-514. https://doi.org/10.1039/C9EW00858F.   DOI
152 Lazarevic, Z.Z., Jovalekic, C., Ivanovski, V.N., Recnik, A., Milutinovic, A., Cekic, B. and Romcevic, N.Z. (2014), "Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route", J. Phys. Chem. Solids, 75(7), 869-877. https://doi.org/10.1016/j.jpcs.2014.03.004.   DOI
153 Lee, P.Y., Chang, S.P. and Chang, S.J. (2013), "Synthesis and optical properties of ZnO thin films prepared by SILAR method with ethylene glycol", Adv. Nano Res., 1(2), 93-103. http://doi.org/10.12989/anr.2013.1.2.093.   DOI
154 Lai, J., Shafi, K.V.P.M., Ulman, A., Loos, K., Yang, N.L., Cui, M.H., Vogt, T., Estournes, C. and Locke, D.C. (2004), "Mixed iron-manganese oxide nanoparticles", J. Phys. Chem. B, 108(39), 14876-14883. https://doi.org/10.1021/jp049913w.   DOI
155 Lee, I.J., Yu, C.J., Yun, Y.D., Lee, C.S., Seo, I.D., Kim, H.Y., Lee, W.W. and Chae, K.H. (2010), "Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source", Rev. Sci. Instrum., 81(2), 026103. https://doi.org/10.1063/1.3298581.   DOI