Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.4.279

Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD)  

Kwak, D.W. (Dept of Physics, Dongguk University)
Lee, Y.H. (Department Information and Communication, Dongguk University)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.4, 2007 , pp. 279-285 More about this Journal
Abstract
We have demonstrated structural evolution and optical properties of the Si-NWs on Si (111) substrates with synthesized nanoscale Au-Si islands by rapid thermal chemical vapor deposition(RTCVD). Au nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. Si-NWs were grown by a mixture gas of $SiH_4\;and\;H_2$ at pressures of $0.1{\sim}1.0$Torr and temperatures of $450{\sim}650^{\circ}C$. SEM measurements showed the formation of Si-NWs well-aligned vertically for Si (111) surfaces. The resulting NWs are 30-100nm in diameter and $0.4{\sim}12um$ in length depending on growth conditions. HR-TEM measurements indicated that Si-NWs are single crystals convered with about 3nm thick layers of amorphous oxide. In addition, optical properties of NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si optical phonon peak with a shoulder at $480cm^{-1}$ were observed in Raman spectra of Si-NWs.
Keywords
RTCVD; nano-islands; HR-TEM; micro-Raman spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. P. Alivisatos, Science, 271, 933 (1996)   DOI   ScienceOn
2 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003)   DOI   ScienceOn
3 L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature 420, 57 (2002)   DOI   ScienceOn
4 T. I. Kamins, X. Li, R. S. Williams, and X. Liu, Nano Lett. 4, 503 (2004)   DOI   ScienceOn
5 T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2002)   DOI   ScienceOn
6 M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C. Dickey, Appl. Phys. Lett. 79, 1546 (2001)   DOI   ScienceOn
7 P. Bruesch, Phonons: Theory and Experiments I- Lattice Dynamics and Models of Interatomic Forces (Springer, Berlin, 1982)
8 N. Fukata, T. Oshima, K. Murakami, T. Kizuka, T. Tsurui, and S. Ito, Appl. Phys. Lett. 86, 213112 (2005)   DOI   ScienceOn
9 Y. Xia et al., Adv. Mater. (Weinheim, Ger.) 15, 353 (2003)   DOI   ScienceOn
10 C. M. Lieber, MRS Bull. 28, 486 (2003)   DOI   ScienceOn
11 E. I. Givargizov, J. Crystal Growth, 31, 20 (1975)   DOI   ScienceOn
12 R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, Phys. Rev. B 61, 16827 (2000)   DOI   ScienceOn
13 Yiying Wu and Peidong Yang, J. Am. Chem. Soc. 123, 3165 (2001)   DOI   ScienceOn
14 S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94, 6005 (2003)   DOI   ScienceOn
15 V. Schmidt, S. Senz, and U. Gosele, Nano Lett. 5, 931 (2005)   DOI   ScienceOn
16 M. S. Dresselhaus et al., Mater. Sci. Eng., C C23, 129 (2003)
17 Y. Cui and C. M. Lieber, Science, 291, 851 (2001)   DOI   ScienceOn
18 D. Wang and H. Dai, Angew. Chem., Int. Ed. 41, 4783 (2002)   DOI   ScienceOn
19 D. W. Kwak, H. Y. Cho, and W. -C. Yang, Physica E, 37, 153 (2007)   DOI   ScienceOn
20 T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, J. Appl. Phys. 89, 1008 (2001)   DOI   ScienceOn
21 J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997)   DOI   ScienceOn
22 Y. Cui, L. J. Lauhon, M. S. Gudiksen, and J. Wang, Appl. Phys. Lett. 78, 2214 (2001)   DOI   ScienceOn
23 T. Hanrath and B. A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002)   DOI   ScienceOn