• Title/Summary/Keyword: Metal-semiconductor interface

Search Result 167, Processing Time 0.024 seconds

Analysis of Electrical Properties of Ti/Pt/Au Schottky Contacts on (n)GaAs Formed by Electron Beam Deposition and RF Sputtering

  • Sehgal, B-K;Balakrishnan, V-R;R Gulati;Tewari, S-P
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This paper describes a study on the abnormal behavior of the electrical characteristics of the (n)GaAs/Ti/Pt/Au Schottky contacts prepared by the two techniques of electron beam deposition and rf sputtering and after an annealing treatment. The samples were characterized by I-V and C-V measurements carried out over the temperature range of 150 - 350 K both in the as prepared state and after a 300 C, 30 min. anneal step. The variation of ideality factor with forward bias, the variation of ideality factor and barrier height with temperature and the difference between the capacitance barrier and current barrier show the presence of a thin interfacial oxide layer along with barrier height inhomogenieties at the metal/semiconductor interface. This barrier height inhomogeneity model also explains the lower barrier height for the sputtered samples to be due to the presence of low barrier height patches produced because of high plasma energy. After the annealing step the contacts prepared by electron beam have the highest typical current barrier height of 0.85 eV and capacitance barrier height of 0.86 eV whereas those prepared by sputtering (at the highest power studied) have the lowest typical current barrier height of 0.67 eV and capacitance barrier height of 0.78 eV.

Schottky Barrier MOSFETs with High Current Drivability for Nano-regime Applications

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Choi, Chel-Jong;Kim, Tae-Youb;Park, Byoung-Chul;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2006
  • Various sizes of erbium/platinum silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from $20{\mu}m$ to 10nm. The manufactured SB-MOSFETs show excellent DIBL and subthreshold swing characteristics due to the existence of Schottky barrier between source and channel. It is found that the minimization of trap density between silicide and silicon interface and the reduction of the underlap resistance are the key factors for the improvement of short channel characteristics. The manufactured 10 nm n-type SBMOSFET showed $550{\mu}A/um$ saturation current at $V_{GS}-V_T$ = $V_{DS}$ = 2V condition ($T_{ox}$ = 5nm) with excellent short channel characteristics, which is the highest current level compared with reported data.

Capacitance-Voltage Characteristics of Carbon Nitride Films for Humidity Sensors According to Deposition Condition (제조 조건에 따른 습도센서용 질화탄소막의 정전용량-전압 특성)

  • Kim, Sung-Yub;Lee, Ji-Gong;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.152-155
    • /
    • 2006
  • Carbon nitride ($CN_X$) films were prepared by reactive RF magnetron sputtering system at various deposition conditions and the C-V characteristics of MIS(metal - insulator - semiconductor) capacitors that have the structures of Al/$CN_x$/p-Si/Al and Al/$CN_x$/$Si_3N_4$/p-Si/Al were investigated. The resistivity of carbon nitride was above $2.40{\times}10^8{\Omega}{\cdot}cm$ at room temperature. The C-V plot showed a typical capacitance-voltage characteristics of semiconductor insulating layers, while it showed hysterisis due to interface charges. Amorphous carbon nitride (a-$CN_x$) films, that have relatively high resistivity and low dielectric constant could be useful as interlayer insulator materials of VLSI(very large-scale integration) and ULSI(ultra large-scale integration).

  • PDF

A 2-D Model for the Potential Distribution and Threshold Voltage of Fully Depleted Short-Channel Ion-Implanted Silicon MESFET's

  • Jit, S.;Morarka, Saurabh;Mishra, Saurabh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.173-181
    • /
    • 2005
  • A new two dimensional (2-D) model for the potential distribution of fully depleted short-channel ion-implanted silicon MESFET's has been presented in this paper. The solution of the 2-D Poisson's equation has been considered as the superposition of the solutions of 1-D Poisson's equation in the lateral direction and the 2-D homogeneous Laplace equation with suitable boundary conditions. The minimum bottom potential at the interface of the depletion region due to the metal-semiconductor junction at the Schottky gate and depletion region due to the substrate-channel junction has been used to investigate the drain-induced barrier lowering (DIBL) and its effects on the threshold voltage of the device. Numerical results have been presented for the potential distribution and threshold voltage for different parameters such as the channel length, drain-source voltage, and implanted-dose and silicon film thickness.

Photovoltaic Effects in Organic Semiconductor $CuPc/C_{60}$ depending on Cathodes ($CuPc/C_{60}$ 구조 유기 반도체에서의 음전극의 종류에 따른 광기전 효과 연구)

  • Oh, Hyun-Seok;Jang, Kyung-Wook;Lee, Sung-Ill;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.181-184
    • /
    • 2004
  • Organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost high-energy conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar-cell devices based on copper-phthalocyanine(CuPc) as a donor(D) and fullerene($C_{60}$) as an electron acceptor(A) with doped charge transport layers, and BCP as an exciton blocking layer(EBL). We have measured photovoltaic characteristics of the solar-cell devices using the xenon lamp as a light source.

  • PDF

Study on the characteristics of transition metals for TSSG process of SiC single crystal (SiC 단결정의 TSSG 공정을 위한 전이금속 특성 연구)

  • Lee, Seung-June;Yoo, Yong-Jae;Jeong, Seong-Min;Bae, Si-Young;Lee, Won-Jae;Shin, Yun-Ji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.55-60
    • /
    • 2022
  • In this study, a heat treatment experiment was conducted to select a new melt composition that can easily control the unintentionally doped nitrogen (N-UID) without degrading the SiC single crystal quality during TSSG process. The experiment was carried out for about 2 hours at a temperature of 1900℃ under Ar atmosphere. The used melt composition is based on either Si-Ti 10 at% or Si-Cr 30 at%, and also Co or Sc transition metals, which are effective for carbon solubility, were added at 3 at%, respectively. After the experiment, the crucible was cross-sectionally cut, and evaluated the Si-C reaction layer on the crucible-melt interface. As a result, with Sc addition, Si-C reaction layers uniformly occurred with a Si-infiltrated layer (~550 ㎛) and a SiC interlayer (~23 ㎛). This result represented that the addition of Sc is an effective transition metal with high carbon solubility and can feed carbon sources into the melt homogeneously. In addition, Sc is well known to have low reactivity energy with nitrogen compared to other transition metals. Therefore, we expect that both growth rate and Nitrogen UID can be controlled by Si-Sc based melt in the TSSG process.

The improvement of electrical properties of InGaZnO (IGZO)4(IGZO) TFT by treating post-annealing process in different temperatures.

  • Kim, Soon-Jae;Lee, Hoo-Jeong;Yoo, Hee-Jun;Park, Gum-Hee;Kim, Tae-Wook;Roh, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.169-169
    • /
    • 2010
  • As display industry requires various applications for future display technology, which can guarantees high level of flexibility and transparency on display panel, oxide semiconductor materials are regarded as one of the best candidates. $InGaZnO_4$(IGZO) has gathered much attention as a post-transition metal oxide used in active layer in thin-film transistor. Due to its high mobility fabricated at low temperature fabrication process, which is proper for application to display backplanes and use in flexible and/or transparent electronics. Electrical performance of amorphous oxide semiconductors depends on the resistance of the interface between source/drain metal contact and active layer. It is also affected by sheet resistance on IGZO thin film. Controlling contact/sheet resistance has been a hot issue for improving electrical properties of AOS(Amorphous oxide semiconductor). To overcome this problem, post-annealing has been introduced. In other words, through post-annealing process, saturation mobility, on/off ratio, drain current of the device all increase. In this research, we studied on the relation between device's resistance and post-annealing temperature. So far as many post-annealing effects have been reported, this research especially analyzed the change of electrical properties by increasing post-annealing temperature. We fabricated 6 main samples. After a-IGZO deposition, Samples were post-annealed in 5 different temperatures; as-deposited, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. Metal deposition was done on these samples by using Mo through E-beam evaporation. For analysis, three analysis methods were used; IV-characteristics by probe station, surface roughness by AFM, metal oxidation by FE-SEM. Experimental results say that contact resistance increased because of the metal oxidation on metal contact and rough surface of a-IGZO layer. we can suggest some of the possible solutions to overcome resistance effect for the improvement of TFT electrical performances.

  • PDF

Progress in Novel Oxides for Gate Dielectrics and Surface Passivation of GaN/AlGaN Heterostructure Field Effect Transistors

  • Abernathy, C.R.;Gila, B.P.;Onstine, A.H.;Pearton, S.J.;Kim, Ji-Hyun;Luo, B.;Mehandru, R.;Ren, F.;Gillespie, J.K.;Fitch, R.C.;Seweel, J.;Dettmer, R.;Via, G.D.;Crespo, A.;Jenkins, T.J.;Irokawa, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Both MgO and $Sc_2O_3$ are shown to provide low interface state densities (in the $10^{11}{\;}eV^{-1}{\;}cm{\;}^{-2}$ range)on n-and p-GaN, making them useful for gate dielectrics for metal-oxide semiconductor(MOS) devices and also as surface passivation layers to mitigate current collapse in GaN/AlGaN high electron mobility transistors(HEMTs).Clear evidence of inversion has been demonstrated in gate-controlled MOS p-GaN diodes using both types of oxide. Charge pumping measurements on diodes undergoing a high temperature implant activation anneal show a total surface state density of $~3{\;}{\times}{\;}10^{12}{\;}cm^{-2}$. On HEMT structures, both oxides provide effective passivation of surface states and these devices show improved output power. The MgO/GaN structures are also found to be quite radiation-resistant, making them attractive for satellite and terrestrial communication systems requiring a high tolerance to high energy(40MeV) protons.

Fabrications and Properties of MFIS Structures using high Dielectric AIN Insulating Layers for Nonvolatile Ferroelectric Memory (고유전율 AIN 절연층을 사용한 비휘발성 강유전체 메모리용 MFIS 구조의 제작 및 특성)

  • Jeong, Sun-Won;Kim, Gwang-Hui;Gu, Gyeong-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.765-770
    • /
    • 2001
  • Metal-ferroelectric-insulator- semiconductor(MFTS) devices by using rapid thermal annealed (RTA) LiNbO$_3$/AIN/Si(100) structures were successfully fabricated and demonstrated nonvolatile memory operations. Metal-insulator-semiconductor(MIS) C-V properties with high dielectric AIN thin films showed no hysteresis and good interface properties. The dielectric constant of the AIN film calculated from the capacitance at the accumulation region in the capacitance-voltage(C-V) characteristics was about 8. The C-V characteristics of MFIS capacitor showed a hysteresis loop due to the ferroelectric nature of the LiNbO$_3$ thin films. Typical dielectric constant value of LiNbO$_3$ film of MFIS device was about 23. The memory window width was about 1.2 V at the gate voltage of $\pm$5 V ranges. Typical gate leakage current density of the MFIS structure was the order of 10$^{-9}$ A/$\textrm{cm}^2$ at the range of within $\pm$500 kV/cm. The ferroelectric capacitors showed no polarization degradation up to about 10$^{11}$ switching cycles when subjected to symmetric bipolar voltage pulse(peak-to-peak 8 V, 50 % duty cycle) in the 500 kHz.

  • PDF

Analysis of Current-Voltage Characteristics Caused by Electron Injection in Metal-Oxide-Semiconductor Devices (전자주입에 의해 야기되는 MOS 소자의 전류-전압 특성 분석)

  • Jeon Hyun-Goo;Choi, Sung-Woo;Ahn, Byung-Chul;Roh, Yong-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.25-35
    • /
    • 2000
  • A simple two-terminal cyclic current0voltage(I-V) technique was used to measure the current-transients in metal-oxide-semiconductor capacitors. Distinct charging/discharging currents were measured and analyzed as a function of the hold time, the delay time, the gate polarity during the FNT electron injection, the injection fluence and the annealing time after the injection had stopped. The charge-exchange current was distinguished from total current-transients containing the displacement current components. Charging/discharging current caused by the charge exchange was strongly dependent not only on the density of positive charges in the $SiO_2$, but also on the density of interface traps generated during the FNT electron injection. Several tentative mechanisms were suggested.

  • PDF