• 제목/요약/키워드: Metal Surface

Search Result 5,290, Processing Time 0.033 seconds

Practical Silicon-Surface-Protection Method using Metal Layer

  • Yi, Kyungsuk;Park, Minsu;Kim, Seungjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.470-480
    • /
    • 2016
  • The reversal of a silicon chip to find out its security structure is common and possible at the present time. Thanks to reversing, it is possible to use a probing attack to obtain useful information such as personal information or a cryptographic key. For this reason, security-related blocks such as DES (Data Encryption Standard), AES (Advanced Encryption Standard), and RSA (Rivest Shamir Adleman) engines should be located in the lower layer of the chip to guard against a probing attack; in this regard, the addition of a silicon-surface-protection layer onto the chip surface is a crucial protective measure. But, for manufacturers, the implementation of an additional silicon layer is burdensome, because the addition of just one layer to a chip significantly increases the overall production cost; furthermore, the chip size is increased due to the bulk of the secure logic part and routing area of the silicon protection layer. To resolve this issue, this paper proposes a practical silicon-surface-protection method using a metal layer that increases the security level of the chip while minimizing its size and cost. The proposed method uses a shift register for the alternation and variation of the metal-layer data, and the inter-connection area is removed to minimize the size and cost of the chip in a more extensive manner than related methods.

Effects of Surface Machining by a Lathe on Microstructure of Near Surface Layer and Corrosion Behavior of SA182 Grade 304 Stainless Steel in Simulated Primary Water

  • Zhang, Zhiming;Wang, Jianqiu;Han, En-hou;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • To find proper lathe machining parameters for SA182 Grade 304 stainless steel (SS), six kinds of samples with different machining surface states were prepared using a lathe. Surface morphologies and microstructures of near surface deformed layers on different samples were analysed. Surface morphologies and chemical composition of oxide films formed on different samples in simulated primary water with $100{\mu}g/L\;O_2$ at $310^{\circ}C$ were characterized. Results showed that surface roughness was mainly affected by lathe feed. Surface machining caused grain refinement at the top layer. A severely deformed layer with different thicknesses formed on all samples. In addition to high defect density caused by surface deformation, phase transformation, residual stress, and strain also affected the oxidation behaviour of SA182 Grade 304 SS in the test solution. Machining parameters used for # 4 (feed, 0.15 mm/r; back engagement, 2 mm; cutting speed, 114.86 m/min) and # 6 (feed,0.20 mm/r; back engagement, 1 mm; cutting speed, 73.01 m/min) samples were found to be proper for lathe machining of SA182 Grade 304 SS.

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min;Kim, Do Hong;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

Evaluation of Thermal Shock Damage of Metal Matrix Composite Using Ultasonics (초음파를 이용한 금속기지 복합재료의 열충격 손상 평가)

  • Kang, Moon-Phil;Lee, Min-Rae;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1480-1487
    • /
    • 2005
  • Metal matrix composites(MMCs) have been rapidly becoming one of the strongest candidates for structural materials fur many high temperature application. However, among the various high temperature environments in which metal matrix composites was applied, thermal shock is known to cause significant degradation in most MMC system. Due to the appreciable difference in coefficient of thermal expansion(CTE) between reinforcement and metal matrix, internal stresses are generated following temperature changes. Infernal stresses affect degradation of mechanical properties of MMC by causing microscopic damage in interface and matrix during thermal cycling. Therefore, the nondestructive evaluation on thermal shock damage behavior of SiC/A16061 composite has been carried out using ultrasonics. For this study, SiC fiber reinforced metal matrix composite specimens fabricated by a squeeze casting technique were thermally cycled in the temperature range 298$\~$673 K up to 1000cyc1es. Three point bending test was conducted to investigate the efffct of thermal shock damage on mechanical properties. The relationship between thermal shock damage behavior and the propagation characteristics of surface wave and SH-ultrasonic wave was discussed by considering the result of SEM observation of fracture surface.

Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent (착화제 첨가에 따른 웨이퍼 세정 용액 특성 분석 및 금속 용해 거동)

  • Kim, Myungsuk;Ryu, Keunhyuk;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.

THE EFFECTS OF SURFACE TREATMENT OF FRACTURED METAL-CERAMIC CROWN ON BOND STRENGTH OF REPAIR RESIN (파절된 도재전장관의 표면처리 방법에 따른 수복레진의 접합강도에 관한 연구)

  • Jeong, Ae-Ri;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of surface treatment of fractured metal-ceramic crown on bond strength of porcelain repair resin. The specimens were divided into two groups for metal specimens add five groups for porcelain specimens by surface treatment methods. the metal specimens were treated by 2 methods. : micro-sandblasting with $50{\mu}m$ aluminum oxide and grinding with diamond bur. The porcelain specimens were treated by 5 methods : micro-sandblasting with $50{\mu}m$ aluminum oxide, grinding with diamond bur, etching with porcelain etching agent, combination of micro-sandblasting and etching procedure, and combination of grinding and etching procedure. After surface treatment, each specimen was bonded with composite resin and the bond strength was measured and the surface texture was observed by scanning electromicroscope(SEM). The results were as follows : 1. There was significant difference in shear bond strength between metal specimen and prorcelain specimen. 2. Bood strength of metal specimens treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting. 3. Bond strength of porcelain specimen treated with diamond bur was higher than that treated with $50{\mu}m$ aluminum oxide sandblasting and porcelain etching agent. 4. There was no significant difference in shear bond strength between the group treated with diamond bur and combined treatment groups respectively. 5. The large undercuts were observed in group treated with diamond bur by SEM.

  • PDF

Distribution and Pollution of Heavy metals in Surface sediments from Nakdong River (낙동강 수계 표층 퇴적물의 중금속 분포와 오염도)

  • Kim, Shin;Kim, Jueon;Lee, Kwonchul;Lee, Kyuyeol;Jeon, Hyelyn;Yu, Jaejung;Lee, Injung;Ahn, Jungmin
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.969-980
    • /
    • 2015
  • In order to certificate the distribution and pollution of heavy metal of surface sediments in Nakdong River were collected and analyzed for grain size, water content, ignition loss and heavy metal content. Surface sediments mainly composed of sand(avg. 94.6%) and water content and ignition loss were 20.46%, 1.53% on average. Grain size were relatively fine and organic matter content were relatively high in the Hoichun and Sunakdonggang. Most of heavy metal content(Zn > Cr > Pb > Ni > Cu > Hg) in the Deokcheongang and Sunakdonggang were higher than the other streams. The Igeo were non polluted(less than 0) in all streams and the EF were relatively high in the small stream and PLI were non polluted(less than 1). In addition, organic matter, heavy metal content and pollution were highly correlation with grain size. Surface sediments in study area, heavy metal pollution of the Sunakdonggang were relatively high compared to the other stream but these results were not serious pollution that exceed the sediment pollution evaluation standard of river and lake in Korea and pollution levels adversely affected the majority of benthos were not.

Growth of Silicon Nanowire Arrays Based on Metal-Assisted Etching

  • Sihn, Donghee;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.211-215
    • /
    • 2012
  • Single-crystalline silicon nanowire arrays (SiNWAs) using electroless metal-assisted etchings of p-type silicon were successfully fabricated. Ag nanoparticle deposition on silicon wafers in HF solution acted as a localized micro-electrochemical redox reaction process in which both anodic and cathodic process took place simultaneously at the silicon surface to give SiNWAs. The growth effect of SiNWs was investigated by changing of etching times. The morphologies of SiNWAs were obtained by SEM observation. Well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. Optical characteristics of SiNWs were measured by FT-IR spectroscopy and indicated that the surface of SiNWs are terminated with hydrogen. The thicknesses and lengths of SiNWs are typically 150-250 nm and 2 to 5 microns, respectively.