Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.1.25

Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent  

Kim, Myungsuk (Department of Energy Engineering, Dankook University)
Ryu, Keunhyuk (Department of Energy Engineering, Dankook University)
Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.28, no.1, 2021 , pp. 25-30 More about this Journal
Abstract
The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.
Keywords
Silicon wafer; Metal impurity; Metal dissolution; Chelating agent; Metal complex;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Bae, H. S. Lee, J. H. Park, H. Nishizawa, M. Kinoshita and H. D. Jeong: J. Kor. Inst. Electr. Electron. Mater. Eng., 23 (2010) 358.   DOI
2 J. W. Kim and K. H. Park, Korea, KR 0049709 (2016).
3 B. K. Choi and H. T. Jeon: Korean J. Met. Mater., 8 (1998) 837.
4 S. W. Lee and C. M. Lee: Appl. Sci. Converg. Technol., 10 (2001) 267.
5 J. M. Lee and S. H. Cho: KSLP, 4 (2001) 22.
6 T. Hattori: Ultraclean surface processing of silicon wafers: secrets of VLSI manufacturing, T. Hattori (Ed.), Springer Science & Business Media, Berlin (2013) 61.
7 S. R. Noh and S. S. You: KSDET., 16 (2017) 41.
8 T. M. Pan, T. F. Lei, T. S. Chao, M. C. Liaw, F. H. Ko and C. P. Lu: J. Electrochem. Soc., 148 (2001) 315.
9 T. Uchida, K. Iijima, T. Yamazaki, S. Tomaru and F. Maruyama, Japan, JP 7005177 (2006).
10 A. Abbadie, J. M. Hartmann, P. Besson, D. Rouchon, E. Martinez, P. Holliger, C. D. Nardo, Y. Campidelli and T. Billon: Appl. Surf. Sci., 254 (2008) 6793.   DOI
11 W. Kern: J. Electrochem. Soc., 137 (1990) 1887.   DOI
12 J. Ryuta, E. Morita, T. Tanaka and Y. Shimanuki: Jpn. J. Appl. Phys., 29 (1990) 1947.
13 H. Kobayashi, J. Ryuta, T. Shingyouji and Y. Shimanuki: Jpn. J. Appl. Phys., 32 (1993) 45.
14 C. R. Inomata, H. Ogawa, K. Ishikawa and S. Fujimura: J. Electrochem. Soc., 143 (1996) 2995.   DOI
15 G. H. Lee and S. I. Bae: Korean Chem. Eng. Res., 2 (2007) 203.
16 G. W. Gale, D. L. Rath, E. I. Cooper, S. Estes, H. F. Okorn, J. Brigante, R. Jagannathan, G. Settembre and E. Adams: J. Electrochem. Soc., 148 (2001) 513.
17 Y. S. Mok, J. O. Jo, S. T. Kim, W. T. Jeong, D. W. Kang, B. H. Rhee and J. K. Kim: KSEE, 29 (2007) 68.
18 N. Kitajima, S. Funkuzumi and Y. Ono: J. Phys. Chem., 82 (1978) 1505.   DOI
19 Y. Mori, K. Uemura, K. Shimanoe and T. Sakon: J. Electrochem. Soc., 142 (1995) 3104.   DOI
20 J. H. Kim, S. H. Kong, G. I. Son and Y. S. Kim: EER., 22 (2001) 73.
21 D. Liu, Z. Li, Z. X. Li and R. Kumar: Carbohydr. Polym., 111 (2014) 469.   DOI
22 P. Ciesla, A. Karocki and Z. Stasicka: J. Photochem. Photobiol. A Chem., 162 (2004) 537.   DOI
23 D. B. Kent, J. A. Davis, L. C. Anderson, B. A. Rea and J. A. Coston: Geochim. Cosmochim. Acta., 66 (2002) 3017.   DOI
24 Y. G. Park and Y. S. Yang: Clean Technol., 20 (2014) 367.   DOI
25 G. V. Korshin, H. S. Chang, A. I. Frenkel and J. F. Ferguson: Environ. Sci. Technol., 41 (2007) 2560.   DOI