DOI QR코드

DOI QR Code

Analysis of Wafer Cleaning Solution Characteristics and Metal Dissolution Behavior according to the Addition of Chelating Agent

착화제 첨가에 따른 웨이퍼 세정 용액 특성 분석 및 금속 용해 거동

  • Kim, Myungsuk (Department of Energy Engineering, Dankook University) ;
  • Ryu, Keunhyuk (Department of Energy Engineering, Dankook University) ;
  • Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
  • 김명석 (단국대학교 에너지공학과) ;
  • 류근혁 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2021.02.05
  • Accepted : 2021.02.23
  • Published : 2021.02.28

Abstract

The surface of silicon dummy wafers is contaminated with metallic impurities owing to the reaction with and adhesion of chemicals during the oxidation process. These metallic impurities negatively affect the device performance, reliability, and yield. To solve this problem, a wafer-cleaning process that removes metallic impurities is essential. RCA (Radio Corporation of America) cleaning is commonly used, but there are problems such as increased surface roughness and formation of metal hydroxides. Herein, we attempt to use a chelating agent (EDTA) to reduce the surface roughness, improve the stability of cleaning solutions, and prevent the re-adsorption of impurities. The bonding between the cleaning solution and metal powder is analyzed by referring to the Pourbaix diagram. The changes in the ionic conductivity, H2O2 decomposition behavior, and degree of dissolution are checked with a conductivity meter, and the changes in the absorbance and particle size before and after the reaction are confirmed by ultraviolet-visible spectroscopy (UV-vis) and dynamic light scattering (DLS) analyses. Thus, the addition of a chelating agent prevents the decomposition of H2O2 and improves the life of the silicon wafer cleaning solution, allowing it to react smoothly with metallic impurities.

Keywords

References

  1. T. Uchida, K. Iijima, T. Yamazaki, S. Tomaru and F. Maruyama, Japan, JP 7005177 (2006).
  2. J. H. Bae, H. S. Lee, J. H. Park, H. Nishizawa, M. Kinoshita and H. D. Jeong: J. Kor. Inst. Electr. Electron. Mater. Eng., 23 (2010) 358. https://doi.org/10.4313/JKEM.2010.23.5.358
  3. J. W. Kim and K. H. Park, Korea, KR 0049709 (2016).
  4. B. K. Choi and H. T. Jeon: Korean J. Met. Mater., 8 (1998) 837.
  5. S. W. Lee and C. M. Lee: Appl. Sci. Converg. Technol., 10 (2001) 267.
  6. J. M. Lee and S. H. Cho: KSLP, 4 (2001) 22.
  7. T. Hattori: Ultraclean surface processing of silicon wafers: secrets of VLSI manufacturing, T. Hattori (Ed.), Springer Science & Business Media, Berlin (2013) 61.
  8. S. R. Noh and S. S. You: KSDET., 16 (2017) 41.
  9. T. M. Pan, T. F. Lei, T. S. Chao, M. C. Liaw, F. H. Ko and C. P. Lu: J. Electrochem. Soc., 148 (2001) 315.
  10. A. Abbadie, J. M. Hartmann, P. Besson, D. Rouchon, E. Martinez, P. Holliger, C. D. Nardo, Y. Campidelli and T. Billon: Appl. Surf. Sci., 254 (2008) 6793. https://doi.org/10.1016/j.apsusc.2008.04.107
  11. W. Kern: J. Electrochem. Soc., 137 (1990) 1887. https://doi.org/10.1149/1.2086825
  12. J. Ryuta, E. Morita, T. Tanaka and Y. Shimanuki: Jpn. J. Appl. Phys., 29 (1990) 1947.
  13. H. Kobayashi, J. Ryuta, T. Shingyouji and Y. Shimanuki: Jpn. J. Appl. Phys., 32 (1993) 45.
  14. C. R. Inomata, H. Ogawa, K. Ishikawa and S. Fujimura: J. Electrochem. Soc., 143 (1996) 2995. https://doi.org/10.1149/1.1837138
  15. G. H. Lee and S. I. Bae: Korean Chem. Eng. Res., 2 (2007) 203.
  16. G. W. Gale, D. L. Rath, E. I. Cooper, S. Estes, H. F. Okorn, J. Brigante, R. Jagannathan, G. Settembre and E. Adams: J. Electrochem. Soc., 148 (2001) 513.
  17. Y. S. Mok, J. O. Jo, S. T. Kim, W. T. Jeong, D. W. Kang, B. H. Rhee and J. K. Kim: KSEE, 29 (2007) 68.
  18. N. Kitajima, S. Funkuzumi and Y. Ono: J. Phys. Chem., 82 (1978) 1505. https://doi.org/10.1021/j100502a009
  19. J. H. Kim, S. H. Kong, G. I. Son and Y. S. Kim: EER., 22 (2001) 73.
  20. Y. Mori, K. Uemura, K. Shimanoe and T. Sakon: J. Electrochem. Soc., 142 (1995) 3104. https://doi.org/10.1149/1.2048696
  21. D. Liu, Z. Li, Z. X. Li and R. Kumar: Carbohydr. Polym., 111 (2014) 469. https://doi.org/10.1016/j.carbpol.2014.04.018
  22. P. Ciesla, A. Karocki and Z. Stasicka: J. Photochem. Photobiol. A Chem., 162 (2004) 537. https://doi.org/10.1016/S1010-6030(03)00418-0
  23. D. B. Kent, J. A. Davis, L. C. Anderson, B. A. Rea and J. A. Coston: Geochim. Cosmochim. Acta., 66 (2002) 3017. https://doi.org/10.1016/S0016-7037(02)00908-0
  24. Y. G. Park and Y. S. Yang: Clean Technol., 20 (2014) 367. https://doi.org/10.7464/ksct.2014.20.4.367
  25. G. V. Korshin, H. S. Chang, A. I. Frenkel and J. F. Ferguson: Environ. Sci. Technol., 41 (2007) 2560. https://doi.org/10.1021/es062554t