• Title/Summary/Keyword: Mesh-Normal Formulation

Search Result 13, Processing Time 0.021 seconds

Frictional Contact Model for Finite Element Analysis of Sheet-Metal Forming Processes (박판 성형 공정의 유한요소 해석을 위한 마찰접촉 모델)

  • 금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2242-2251
    • /
    • 1993
  • The mesh-based frictional contact model has been developed which does not rely on the spatial derivatives of the tool surface. Only points on the surface are evaluated from the description. which can then be simplified because of the relaxed demands placed on it. The surface tangents, normals, and corresponding derivatives at each finite-element node are evaluated directly from the finite-element mesh, in terms of the connecting nodal positions. The advantages accrue because there is no longer a need for a smooth tool surface to assure reasonable normals and derivatives. Furthermore, it can be shown that the equilibrium equations can only be properly written with a special normal derived from the mesh itself. The validity, accuracy, computation time, and stability of mesh-based contact model were discussed with the numerical examples of rounded flat-top and rough, flat-top rounded punch forming operations. Also, the forming process of a automobile inner panel section was simulated for testing the robustness of new contact model. In the discussion, the superiority of new model was examined, comparing with tool-based contact one.

Finite Element Simulation of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압 성형 공정의 유한요소 시뮬레이션)

  • 구본영;김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.590-597
    • /
    • 2000
  • A finite element formulation lot the simulation of axisymmetric sheet hydroforming is proposed, and an implicit program is coded. In order to describe normal anisotropy of steel sheet, Hill's non-quadratic yield function (Hill, 1979) is employed. Frictional contacts among sheet surface, rigid tool surface, and flexible hydrostatic pressure are considered using mesh normal vectors based on finite element of the sheet. Applied hydraulic pressure is also considered as a function of forming rate and time and treated as an external loading. The complete set of the governing relations comprising equilibrium and interfacial equations is approximately linearized for Newton-Raphson algorithm. In order to verify the validity of the developed finite element formulation, the axisymmetric bulge test is simulated. Simulation results are compared with other FEM results and experimental measurements and showed good agreements. In axisymmetric hydroforming processes of a disk cover, formability changes are observed according to the hydraulic pressure curve changes.

  • PDF

Finite Element Simulation of Axisymmetric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • Kim Y. S.;Keum Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.58-61
    • /
    • 2001
  • An implicit finite element formulation for axisymmetric tube hydroforming is investigated. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and frictionless contact between tube and fluid are considered using the mesh-normal vector computed from finite element mesh of the tube. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and simulation results are compared with experimental measurements. In the axisymmetric tube hydroforming process, an optimal hydraulic curve is pursued by performing the simulation with various internal pressures and axial forces.

  • PDF

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal (평면이방성 박판성형공정의 3차원 유한요소해석)

  • 이승열;금영탁;박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions (임의 조건으로 성형되는 박판의 평면변형률 해석)

  • ;;R. H. Wagoner
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF

Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions (임의의 성형조건을 갖는 박판의 평면변형율 해석)

  • Keum, Y.T.;Lee, S.Y.;Wagoner, R.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup (원통컵 디프드로잉 공정의 귀발생 예측)

  • 이승열;이승열;금영탁;정관수;박진무
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

Sectional Forming Analysis of Stamping Processes for Luminum Alloy Sheet metals (알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석)

  • 이광병;이승열;금영탁
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 1997
  • The sectional forming analysis of stamping pocesses for aluminum alloy sheet metals was investigated. For the modeling of the anomalous behavior of aluminum alloy sheet. the Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory with an isotropic hardening rule were employed. The rigid-viscoplastic FEM formulation which solves equilibrium equation for plane-strain stage with mesh-normal geometric constraints was derived. A new method to determine the Barlat's anisotropic coefficients was also suggested. To verify the validity of the formulation, the stretch and draw forming processes of a square cup were simulated.

  • PDF

COARSE MESH FINITE DIFFERENCE ACCELERATION OF DISCRETE ORDINATE NEUTRON TRANSPORT CALCULATION EMPLOYING DISCONTINUOUS FINITE ELEMENT METHOD

  • Lee, Dong Wook;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.783-796
    • /
    • 2014
  • The coarse mesh finite difference (CMFD) method is applied to the discontinuous finite element method based discrete ordinate calculation for source convergence acceleration. The three-dimensional (3-D) DFEM-Sn code FEDONA is developed for general geometry applications as a framework for the CMFD implementation. Detailed methods for applying the CMFD acceleration are established, such as the method to acquire the coarse mesh flux and current by combining unstructured tetrahedron elements to rectangular coarse mesh geometry, and the alternating calculation method to exchange the updated flux information between the CMFD and DFEM-Sn. The partial current based CMFD (p-CMFD) is also implemented for comparison of the acceleration performance. The modified p-CMFD method is proposed to correct the weakness of the original p-CMFD formulation. The performance of CMFD acceleration is examined first for simple two-dimensional multigroup problems to investigate the effect of the problem and coarse mesh sizes. It is shown that smaller coarse meshes are more effective in the CMFD acceleration and the modified p-CMFD has similar effectiveness as the standard CMFD. The effectiveness of CMFD acceleration is then assessed for three-dimensional benchmark problems such as the IAEA (International Atomic Energy Agency) and C5G7MOX problems. It is demonstrated that a sufficiently converged solution is obtained within 7 outer iterations which would require 175 iterations with the normal DFEM-Sn calculations for the IAEA problem. It is claimed that the CMFD accelerated DFEM-Sn method can be effectively used in the practical eigenvalue calculations involving general geometries.