DOI QR코드

DOI QR Code

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes

축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션

  • 김용석 (한양대학교 일반대학원 정밀기계공학과) ;
  • 금영탁 (한양대학교 기계공학부)
  • Published : 2002.02.01

Abstract

Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Keywords

References

  1. Ahmetoglu, M., and Altan, T., 2000, "Tube hydroforming: State-of-the-art and future trends", J. Mat. Proc. Tech., Vol.98. pp.25-33. https://doi.org/10.1016/S0924-0136(99)00302-7
  2. Rama, S. C. and Zhang, J. M., 1999, "A numerical approach to analyze tubular hydroforming", NUMI-SHEET'99, pp.497-502.
  3. Longwu, W. and Yu, Y., 1996, "Computer simulations of forming automotive structural parts by hydroforming process". NlJMISHEET'96, pp.324-329.
  4. Ahmed, M. and Hashmi, M.S.J., 1997, "Estimation of machine parameters for hydraulic bulge forming of tubular components", J. Mat. Proc. Tech., Vol. 64. pp.9-23. https://doi.org/10.1016/S0924-0136(96)02549-6
  5. Chang, D., Nees, R. and Morin, M., 1996, "Application of Hydroforming Technology for Exhaust Manifolds", SAE 960804,, pp.135-140.
  6. Morphy, G., 1996. "Hydroforming High Strength Steel Tube for Automotive Structural Applications Using Expansion", SAE 96MJA436.
  7. 이승희, 전병희, 김의석, 오수익, 1998, “Tube hydromforming을 위한 성형인자 연구”, 한국소성가공학회, 98추계학술대회논문집, pp.32-36.
  8. 김성태, 임성언, 이택근, 김영석, 2000, “관재 하이드로 포밍에 의한 성형 공정의 실험적 연구”, 한국소성가공학회지, 제9권 제1호, pp.35-42.
  9. Hill, R., 1979, "Theoretical Plasticity of Textured Aggregates", Math. Proc. Camb. Phil. Soc., 85, pp.179-191. https://doi.org/10.1017/S0305004100055596
  10. 금영탁, Wagoner, R. H., 1991, "프레스 금형 단면의 성형성 평가를 위한 유한요소법”, 대한기계학회논문집, 제15권 제4호, pp.1108-1122.
  11. Keum, Y. T and W.agoner, R. H., 1990, "Compatible Description of Tool Surfaces and FEM Meshes for Analyzing Sheet Forming Operations in Two- and Three- Dimensions", Ph.D. Dissertation, The Ohio State University.
  12. Sokolowski, T., Gerke, K., Ahmetoglu, M. and Altan, T., 2000, "Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes", J. Mat. Proc. Tech., Vol.98, pp.34-40. https://doi.org/10.1016/S0924-0136(99)00303-9