• Title/Summary/Keyword: Mechanisms of uptake

Search Result 161, Processing Time 0.03 seconds

Critical Review on Evaporative Loss of Semivolatile Aerosols during Sampling

  • Kim, Seung-Won
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.3
    • /
    • pp.171-181
    • /
    • 2010
  • Semivolatile aerosols exist as vapor and particles at the same time in room temperature and each phase has different intake and uptake mechanisms. This characteristic requires substantial consideration during exposure assessment of semivolatile aerosol. Some sampling methods for solid particles pose high possibility of evaporative loss during sampling. Therefore, when establishing sampling strategy for them, the factors affecting the phase distribution of semivolatile aerosol should be counted including semivolatile aerosol of interest and sampling methods used. Evaluation for phase distributions of semivolatile aerosols is also recommended. Metalworking fluids, pesticides, asphalt fumes, diesel exhaust, and environmental tobacco smoke are common health-related semivolatile aerosols in workplaces.

A Review of Some Representative Techniques for Controlling the Indoor Volatile Organic Compounds

  • Kabir, Ehsanul;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.137-146
    • /
    • 2012
  • Poor indoor air quality is now worldwide concern due to its adverse impacts on our health and environment. Moreover, these impacts carry a significant burden to the economy. Various technical approaches (e.g., biological, activated carbon fiber (ACF), photocatlytic oxidation (PCO), etc.) have gained popularity in controlling indoor volatile organic compounds (VOCs). This is because removing indoor VOC sources or increasing ventilation rates is often not feasible or economical. This review provides an overview of the various air purification technologies used widely to improve indoor air quality. Although most of these technologies are very useful to remove indoor VOCs, there is no single fully satisfactory method due to their diversity and presence at the low concentration. To achieve technical innovations and the development of specific testing protocols, one should possess a better knowledge on the mechanisms of substrate uptake at VOC concentrations.

The Zinc Transport Systems and Their Regulation in Pathogenic Fungi

  • Jung, Won Hee
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.179-183
    • /
    • 2015
  • Zinc is an essential micronutrient required for many enzymes that play essential roles in a cell. It was estimated that approximately 3% of the total cellular proteins are required for zinc for their functions. Zinc has long been considered as one of the key players in host-pathogen interactions. The host sequesters intracellular zinc by utilizing multiple cellular zinc importers and exporters as a means of nutritional immunity. To overcome extreme zinc limitation within the host environment, pathogenic microbes have successfully evolved a number of mechanisms to secure sufficient concentrations of zinc for their survival and pathogenesis. In this review, we briefly discuss the zinc uptake systems and their regulation in the model fungus Saccharomyces cerevisiae and in major human pathogenic fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus gattii.

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.

The Relationship between F-18-FDG Uptake, Hexokinase Activity and Glut-1 Expression in Various Human Cancer Cell Lines (다양한 사람 종양세포주에서 F-18-FDG의 섭취와 Hexokinase 활성 및 Glut-1 발현과의 상관관계)

  • Kim, Bo-Kwang;Chung, June-Key;Lee, Yong-Jin;Choi, Yong-Woon;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2000
  • Purpose: To investigate the mechanisms related to F-18-FDG uptake by tumors, F-18-FDG accumulation was compared with glucose transporter-1 (Glut-1) expression and hexokinase activity in various human cancer cell lines. Materials and Methods: Human colon cancer (SNU-C2A, SNU-C4, SNU-C5), hepatocellular carcinoma (SNU-387, SNU-423, SNU-449), lung cancer (NCI-H522, NCI-H358, NCI-H1299), uterine cervical cancer (HeLa, HeLa 229, HeLa S3) and brain tumor (A172, Hs 683) cell lines were used. After 24 hr incubation of $5{\times}10^5$ cells, 37 kBq F-18-FDG was added and the uptake by cells at 10 min was measured using a gamma counter. Hexokinase activity was measured by continuous spectrophotometric rate determination. To measure mitochondrial hexokinase activity, mitochondrial fraction was separated by a high speed centrifuge. Immunohistochemical staining of Glut-1 was performed, and graded as 0, 1, 2, or 3 according to expression. Results: There was difference among F-18-FDG uptake, total and mitochondrial hexokinase activity, and Glut-1 expression with different cancer cell lines. The correlations of F-18-FDG with total hexokinase and mitochondrial hexokinase activity were low (r=0.27 and 0.26, respectively). Glut-1 expression showed a good correlation with F-18-FDG uptake (p=0.81, p=0.0015). Previously, we reported no correlation of F-18-FDG uptake with hexokinase activity in colon cancer cell lines. Thus, when colon cancer cells were excluded, F-18-FDG uptake showed higher correlation with total hexokinase and mitochondrial hexokinase activity (r=0.81, p=0.0027 and r=0.81, p=0.0049, respectively). Conclusion: Both Glut-1 expression and hexokinase activity were contributing factors related to F-18-FDG accumulation in human cancer cell lines. The relative contribution of Glut-1 expression and hexokinase activity, however, was different among different cancer cell types.

  • PDF

Effects of Exogenous Bovine Somatotropin on Mammary Function of Late Lactating Crossbred Holstein Cows

  • Tanwattana, P.;Chanpongsang, S.;Chaiyabutr, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.88-95
    • /
    • 2003
  • The objective of the present study was to determine the effect of exogenous bovine somatotropin on the mammary function in late lactating crossbred Holstein cows. Twelve 87.5% late lactating Holstein cows, approximately 30 weeks postpartum, were divided into two groups of 6 animals each. Animals in the control group were given sodium bicarbonate buffer by subcutaneous injection, while animals in the treated group were given recombinant bovine somatotropin (bST) by subcutaneous injection with 500 mg of bST (14 day prolonged-release bST). After bST injection, milk yield significantly increased from the control level on day 8 to day 20 (p<0.05) with a concomitant increase in mammary blood flow (p<0.01). An increase in mammary blood flow in response to bST treatment was greater than an increase in milk production. An increased plasma concentration of IGF-I coincided with an increase in mammary blood flow in animals treated with bST. There were no significant changes in the concentration of arterial plasma glucose concentration, the arteriovenous concentration difference (A-V difference) and mammary extraction ratio while the mammary glucose uptake increased when compared to the control group. The concentration of arterial plasma triglyceride decreased throughout the experimental period in animals give bST. The plasma concentration of acetate, and the mammary uptake for acetate significantly increased (p<0.05) after bST treatment. The action of bST did not affect the plasma concentration, A-V difference and extraction ratio across the mammary gland for $\beta$-hydroxybutyrate. The concentrations of milk fat and lactose tended to increase during bST treatment. Milk protein concentration initially increased in the first few days and decreased after bST injection when compared to the pretreated period. The present results indicated that bST could affect the mammary function in late lactating cows by increase in milk yield involving changes in both extra-mammary and intra-mammary mechanisms. The exogenous bST exerted its galactopoietic action through an increase in circulating IGF-I of the late lactating Crossbred Holstein cattle.

Dyeing of Silk Fabric with Aqueous Extract of Cassia tora L. Seed - focusing on the mordanting and dyeing mechanisms - (결명자 색소 추출액에 의한 견직물 염색 -매염 및 염착 mechanism을 중심으로-)

  • Dho Seong Kook;Kang In A
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.10-18
    • /
    • 2005
  • Silk fabrics mordanted with $Fe^{2+},\;Ni^{2+},\;and\;Cu^{2+}$ were dyed with the aqueous extract of Cassia tora L. seed which was known to include water soluble colorant kaempferol, one of flavonol compounds. Kaempferol can react with free radicals and chelate transition metal ions, which is thought to catalyze processes leading to the appearance of free radicals and have antioxidant activity. In relation to the coordinating and chelating mechanism of the ions with the silk protein and kaempferol, reasonable conclusions should be made on the colorant uptake and the water fastness of the fabric. The amount of the colorant on the fabric was in the order of $Fe^{2+}>Ni^{2+}>Cu^{2+}$. In case of dyeing through coordinaiton bonds between transition metal ions and silk protein and colorants, it was thought that the ions with the smaller secondary hydration shell, the higher preference to the atoms of the ligand coordinated, and the suitable bonding stability for the substitution of primarily hydrated water molecules for colorants led to the higher colorant uptake. The water fastnsess of the fabric was in the order of $Fe^{2+}>Cu^{2+}>Ni^{2+}$. It should be reasonable to choose transition metal ions with weak and strong tendency to the ionic and the coordination bond, respectively, to the carboxylate anion of the silk protein. Although further research needs to be done, the conclusions above may be generally applied to the natural dyeing through the coordination bond mechanism between transition metal ions and colorants and substrates.

Fermentation Increases Antidiabetic Effects of Acanthopanax Senticosusbhpark@chonbuk.ac.kr (발효에 의한 오가피의 항당뇨 활성 촉진)

  • Ham, Seong-Ho;Lim, Byung-Lak;Yu, Jia-hua;Ka, Sun-O;Park, Byung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.340-345
    • /
    • 2008
  • Extract of Acanthopanax senticosus has recently been demonstrated to possess significant antidiabetic potential, in accordance with the traditional use of this plant as an antidiabetic natural health product. The present study evaluated the effects of fermented extract (FE) of this plant on glucose-stimulated insulin secretion, glucose uptake, and streptozotocin-induced type 1 diabetes model. A 3 h pretreatment with FE prevented $IL-1{\beta}$ and $IFN-{\gamma}$ toxicity in isolated rat islets. However, it did not affect insulin-stimulated glucose uptake in C2C12 myotubes. In addition, pretreatment of mice with FE blocked the destruction of streptozotocin-induced islets and the development of type 1 diabetes. FE reduced blood glucose level, increased insulin secretion, and improved glucose tolerance in streptozotocin-treated mice, whereas nonfermented extract (NFE) had moderate effects. Immunohistochemical staining for insulin clearly showed that pretreatment with FE blocked the STZ-induced islets destruction and restored the number of islet cells that secreted insulin to the level of the control. Although the active principles and their mechanisms of action remain to be identified, FE may nevertheless represent a novel complementary therapy and a source of novel therapeutic agents against type 1 diabetes mellitus.

Anti-adipogenic effect of the flavonoids through the activation of AMPK in palmitate (PA)-treated HepG2 cells

  • Rajan, Priyanka;Natraj, Premkumar;Ranaweera, Sachithra S.;Dayarathne, Lakshi A.;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.4.1-4.15
    • /
    • 2022
  • Background: Flavonoids are natural polyphenols found widely in citrus fruit and peel that possess anti-adipogenic effects. On the other hand, the detailed mechanisms for the antiadipogenic effects of flavonoids are unclear. Objectives: The present study observed the anti-adipogenic effects of five major citrus flavonoids, including hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on AMP-activated protein kinase (AMPK) activation in palmitate (PA)-treated HepG2 cells. Methods: The intracellular lipid accumulation and triglyceride (TG) contents were quantified by Oil-red O staining and TG assay, respectively. The glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay. The levels of AMPK, acetyl-CoA carboxylase (ACC), and glycogen synthase kinase 3 beta (GSK3β) phosphorylation, and levels of sterol regulatory element-binding protein 2 (SREBP-2) and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) expression were analyzed by Western blot analysis. The potential interaction between the flavonoids and the γ-subunit of AMPK was investigated by molecular docking analysis. Results: The flavonoid treatment reduced both intracellular lipid accumulation and TG content in PA-treated HepG2 cells significantly. In addition, the flavonoids showed increased 2-NBDG uptake in an insulin-independent manner in PA-treated HepG2 cells. The flavonoids increased the AMPK, ACC, and GSK3β phosphorylation levels and decreased the SREBP-2 and HMGCR expression levels in PA-treated HepG2 cells. Molecular docking analysis showed that the flavonoids bind to the CBS domains in the regulatory γ-subunit of AMPK with high binding affinities and could serve as potential AMPK activators. Conclusion: The overall results suggest that the anti-adipogenic effect of flavonoids on PA-treated HepG2 cells results from the activation of AMPK by flavonoids.

[ $Ce^{4+}$ ]-Stimulated Ion Fluxes Are Responsible for Apoptosis and Taxol Biosynthesis in Suspension Cultures of Taxus Cells

  • Li Jing-Chuan;Ge Zhi-Qiang;Yuan Ying-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.109-114
    • /
    • 2005
  • Ion fluxes across the plasma membrane activated by 1 mM $Ce^{4+}$, cell apoptosis and taxol biosynthesis in suspension cultures of Taxus cusp/data were studied. The extracellular pH sharply decreased upon the addition of 1 mM $Ce^{4+}$, then increased gradually and exceeded the initial pH value over a time period of 12 h. The extracellular $Ca^{2+}$ concentration decreased within the first 3 h after the addition of $Ce^{4+}$, then gradually decreased to one third of initial value in control at about 72 h and remained unchanged afterwards. Experiments with an ion channel blocker and a $Ca^{2+}$-channel blocker indicated that the dynamic changes in extracellular pH and the $Ca^{2+}$ concentration resulted from the $Ce^{4+}$-induced activation of W uptake and $Ca^{2+}$ influx across the plasma membrane via ion channels. A pretreatment of the ion channel blocker initiated $Ce^{4+}$-treated cells to undergo necrosis, and the prior addition of the $Ca^{2+}$-channel blocker inhibited $Ce^{4+}$-induced taxol biosynthesis and apoptosis. It is thus inferred that W uptake is necessary for cells to survive a $Ce^{4+}$-caused acidic environment and is one of the mechanisms of $Ce^{4+}$-induced apoptosis. Furthermore, the $Ca^{2+}$ influx across the plasma membrane mediated both the $Ce^{4+}$-induced apoptosis and taxol biosynthesis.