Acknowledgement
This work was partly funded by the Swiss Nuclear Safety Inspectorate ENSI as part of the DRYstars project (CTR00521) conducted within the framework of the STARS program (http://www.psi.ch/stars). The authors would also like to acknowledge the PSI Laboratory for Nuclear Materials for fruitful discussions.
References
- S. Yagnik, Fuel analysis and licensing code: falcon MOD01: verification and validation, EPRI technical report 3002005391 (2015).
- P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Extension of Falcon's modelling capabilities to dry storage: analysis of cladding creep and helium-induced swelling, The Nuclear Materials Conference NuMat (2020).
- P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Dry storage modeling activities at PSI: implementation and testing of a creep model for dry storage, Kerntechnik 86 (2020) 419, https://doi.org/10.3139/124.200072.
- P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Spent nuclear fuel in dry storage conditions - current trends in fuel performance modeling, J. Nucl. Mater. 555 (2021), 153138, https://doi.org/10.1016/j.jnucmat.2021.153138.
- P. Konarski, C. Cozzo, G. Khvostov, H. Ferroukhi, Modeling of hydrogen behavior in liner claddings, J. Nucl. Mater. 573 (2023), 154125, https://doi.org/10.1016/j.jnucmat.2022.154125.
- A. Motta, L. Capolungo, L.-Q. Chen, M. Cinbiz, M. Daymond, D. Koss, E. Lacroix, G. Pastore, P.-C. Simon, M. Tonks, B. Wirth, M. Zikryi, Hydrogen in zirconium alloys, A review Journal of Nuclear Materials 518 (2019) 440-460, https://doi.org/10.1016/j.jnucmat.2019.02.042.
- O. Courty, A. Motta, J. Hales, Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding, J. Nucl. Mater. 452 (2014) 311-320, https://doi.org/10.1016/j.jnucmat.2014.05.013.
- D. Stafford, Multidimensional simulations of hydrides during fuel rod lifecycle, J. Nucl. Mater. 466 (2015) 362-372, https://doi.org/10.1016/j.jnucmat.2015.06.037.
- F. Passelaigue, E. Lacroix, G. Pastore, A. Motta, Implementation and validation of the hydride nucleation-growth-dissolution (HNGD) model in BISON, J. Nucl. Mater. 544 (2021) 152683, https://doi.org/10.1016/j.jnucmat.2020.152683.
- F. Passelaigue, E. Lacroix, G. Pastore, A. Motta, Predicting the hydride rim by improving the solubility limits in the Hydride Nucleation-Growth-Dissolution (HNGD) model, J. Nucl. Mater. 558 (2022) 153363, https://doi.org/10.1016/j.jnucmat.2021.153363.
- F. Feria, L. Herranz, Effect of the oxidation front penetration on in-clad hydrogen migration, J. Nucl. Mater. 500 (2018) 349-360, https://doi.org/10.1016/j.jnucmat.2018.01.011.
- F. Feria, C. Aguado, L. Herranz, Extension of FRAPCON-xt to hydride radial reorientation in dry storage, Ann. Nucl. Energy 145 (2020) 107559, https://doi.org/10.1016/j.anucene.2020.107559.
- F. Feria, L. Herranz, Assessment of hydride precipitation modelling across fuel cladding: hydriding in non-defective and defective fuel rods, Ann. Nucl. Energy 188 (2023) 109810, https://doi.org/10.1016/j.anucene.2023.109810.
- M. Sugisaki, K. Hashizume, Y. Hatano, Estimation of hydrogen redistribution in zircaloy cladding of spent fuel under thermal conditions of dry storage and evaluation of its influence on mechanical properties of the cladding, IAEA-TECDOC-1316 (2002).
- A. Aly, K. Gamble, M. Avramova, R. Williamson, K. Ivanov, Modeling 3D hydrogen diffusion and localized hydride formation in zirconium alloy cladding using high fidelity multi-physics coupled codes, in: M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, 2017.
- C. Lee, Y. Lee, Simulation of hydrogen diffusion along the axial direction in zirconium cladding tube during dry storage, J. Nucl. Mater. 579 (2023) 154352, https://doi.org/10.1016/j.jnucmat.2023.154352.
- US NRC Spent Fuel Project Office, Interim Staff Guidance-11, Revision 2, 2002. https://www.nrc.gov/reading-rm/doc-collections/isg/isg-11R3.pdf.
- EPRI program 41.03.01: Used Fuel and High-Level Waste Management https://www.epri.com/research/programs/061149/hbudemo.
- J.J. Kearns, Diffusion coefficient of hydrogen in alpha zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 43 (1972) 330, https://doi.org/10.1016/0022-3115(72)90065-7.
- S. Kang, P.-H. Huang, V. Petrov, A. Manera, T. Ahn, B. Kammenzind, A. Motta, Determination of the hydrogen heat of transport in Zircaloy-4, J. Nucl. Mater. 573 (2023) 154122, https://doi.org/10.1016/j.jnucmat.2022.154122.
- W.J. Kammenzind, B. Franklin, D.G. Peters, H.R. Duffin, Hydrogen pickup and redistribution in alpha-annealed zircaloy-4, in: 11th International Symposium on Zirconium in the Nuclear Industry, ASTM STP1295, 1997, p. 338, https://doi.org/10.2172/10181237.
- A. Sawatzky, Hydrogen in zircaloy-2: its distribution and heat of transport, J. Nucl. Mater. 2 (1960) 321-328, https://doi.org/10.1016/0022-3115(60)90004-0.
- P. Konarski, Thermo-chemical-mechanical Modelling of Nuclear Fuel Behavior. Impact of Oxygen Transport in the Fuel on Pellet-Cladding Interaction Materials, Universite de Lyon, 2019. English. NNT: 2019LYSEI080. tel-02570386.
- M.C. Billone, T.A. Burtseva, R.E. Einziger, Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions, J. Nucl. Mater. 433 (2013) 431-448, https://doi.org/10.1016/j.jnucmat.2012.10.002.
- W. Gong, P. Trtik, S. Valance, J. Bertsch, Hydrogen diffusion under stress in Zircaloy: high-resolution neutron radiography and finite element modeling, J. Nucl. Mater. 508 (2018) 459, https://doi.org/10.1016/j.jnucmat.2018.05.079.
- C. Cozzo, G. Khvostov, I. Clifford, H. Ferroukhi, Appraisal of the NRC H-uptake calculation for Swiss boiling water reactors, Nucl. Eng. Des. 391 (2022) 111731, https://doi.org/10.1016/j.nucengdes.2022.111731.
- P. M. Clifford, Acceptable Fuel Cladding Hydrogen Uptake Models US NRC Memorandum, ML15133A306.
- F. Boldt, Implementation of hydrogen solid solubility data and precipitation threshold stresses in the fuel rod code TESPA-ROD, J. Nucl. Eng. Radiat. Sci. 5 (2019) 20904, https://doi.org/10.1115/1.4042118.
- O. Zanellato, M. Preuss, J.-Y. Buffiere, F. Ribeiro, A. Steuwer, J. Desquines, J. Andrieux, B. Krebs, Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4, J. Nucl. Mater. 420 (2012) 537-547, https://doi.org/10.1016/j.jnucmat.2011.11.009.
- Z. Pan, I. Ritchie, M. Puls, The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys, J. Nucl. Mater. 228 (1996) 227-237, https://doi.org/10.1016/S0022-3115(95)00217-0.
- K. Une, S. Ishimoto, Y. Etoh, K. Ito, K. Ogata, T. Baba, K. Kamimura, Y. Kobayashi, The terminal solid solubility of hydrogen in irradiated Zircaloy-2 and microscopic modeling of hydride behaviour, J. Nucl. Mater. 389 (2009) 127-136, https://doi.org/10.1016/j.jnucmat.2009.01.017.
- A. McMinn, E.C. Darby, J.S. Schofield, The terminal solid solubility of hydrogen in zirconium alloys, Zirconium in the Nuclear Industry: 12th International Symposium STP1354 (2000), https://doi.org/10.1520/STP14300S.
- K. Colas, Fundamental Experiments on Hydride Reorientation in Zircaloy, PhD thesis, The Pennsylvania State University, 2012.
- J. Desquines, D. Drouan, M. Billone, M. Puls, P. March, S. Fourgeaud, C. Getrey, V. Elbaz, M. Philippe, Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding, J. Nucl. Mater. 453 (2014) 131-150, https://doi.org/10.1016/j.jnucmat.2014.06.049.
- Delayed Hydride Cracking Considerations Relevant to Spent Nuclear Fuel Storage, EPRI Technical Report, 2011, 1022921.
- P. Raynaud, R. Einziger, Cladding stress during extended storage of high burnup spent nuclear fuel, J. Nucl. Mater. 464 (2015) 304-312, https://doi.org/10.1016/j.jnucmat.2015.05.008.
- S.Q. Shi, M.P. Puls, Criteria for fracture initiation at hydrides in zirconium alloys-I. Sharp crack tip, J. Nucl. Mater. 208 (1994) 232-242, https://doi.org/10.1016/0022-3115(94)90332-8.
- T. Aliev, M. Kolesnik, Analytical approach to DHC description in zirconium alloys, Int. J. Fract. 228 (2021) 71-84, https://doi.org/10.1007/s10704-021-00515-0.
- S. Sagat, C. Coleman, M. Griffits, B. Wilkins, The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb, in: Zirconium in the Nuclear Industry: Tenth International Symposium, STP15183S, 1994, pp. 35-61, https://doi.org/10.1520/STP15183S.
- Y. Kim, Y. Cheong, Anisotropic delayed hydride cracking velocity of CANDU Zr-2.5Nb pressure tubes, J. Nucl. Mater. 373 (2008) 179-185, https://doi.org/10.1016/j.jnucmat.2007.05.047.
- M. Levi, M. Puls, DHC behaviour of irradiated Zr-2.5Nb pressure tubes up to 365℃, in: Conference on Structural Mechanics in Reactor Technology (SMiRT 18), vol. 18, SMiRT, 2005, pp. 1811-1823.
- F. Huang, W. Mills, Delayed hydride cracking behavior for ZIRCALOY-2 tubing, Metall. Trans. A 22 (1991) 2049-2060, https://doi.org/10.1007/BF02669872.
- Evaluation of Conditions for Hydrogen Induced Degradation of Zirconium Alloys during Fuel Operation and Storage IAEA Technical Report, IAEA-TECDOC-1781.
- J. Hong, M. Park, A. Alvarez Holston, J. Stjarnsater, D. Kook, Threshold stress intensity factor of delayed hydride cracking in irradiated and unirradiated zircaloy-4 cladding, J. Nucl. Mater. 543 (2021) 152596, https://doi.org/10.1016/j.jnucmat.2020.152596.
- S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12 (1941) 91-96, https://doi.org/10.1214/aoms/1177731788.
- J. Markowitz, The thermal diffusion of hydrogen in alpha-delta Zircaloy 2, Trans. Metall. Soc. AIME 221 (1961) 819.
- J. Merlino, Experiments in Hydrogen Distribution in Thermal Gradients Calculated Using BISON M.Eng. Paper in Nuclear Engineering, The Pennsylvania State University, 2019. https://github.com/FloPasselaigue/HNGD/blob/master/Merlino_PSU_MEng_2019.pdf.
- F. Boldt, M. Stuke, M. Peridis, Benchmark on Thermomechanical Fuel Rod Behaviour - Phase I Report GRS Report, GRS-671, 2022. https://www.grs.de/sites/default/files/2022-05/GRS-671.pdf.
- Fuel modelling at extended burnup (FUMEX-II), in: IAEA Coordinated Research Project, IAEA-TECDOC-1687, 2012. https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1687_web.pdf.
- R.L. Eadie, K. Tashiro, D. Harrington, M. Leger, The determination of the partial molar volume of hydrogen in zirconium in a simple stress gradient using comparative microcalorimetry, Scripta Metall. Mater. 26 (1992) 231-236, https://doi.org/10.1016/0956-716X(92)90178-H.