A Review of Some Representative Techniques for Controlling the Indoor Volatile Organic Compounds

  • Kabir, Ehsanul (Department of Farm, Power & Machinery, Bangladesh Agricultural University) ;
  • Kim, Ki-Hyun (Department of Environment & Energy, Sejong University)
  • Received : 2012.06.05
  • Accepted : 2012.08.06
  • Published : 2012.09.30


Poor indoor air quality is now worldwide concern due to its adverse impacts on our health and environment. Moreover, these impacts carry a significant burden to the economy. Various technical approaches (e.g., biological, activated carbon fiber (ACF), photocatlytic oxidation (PCO), etc.) have gained popularity in controlling indoor volatile organic compounds (VOCs). This is because removing indoor VOC sources or increasing ventilation rates is often not feasible or economical. This review provides an overview of the various air purification technologies used widely to improve indoor air quality. Although most of these technologies are very useful to remove indoor VOCs, there is no single fully satisfactory method due to their diversity and presence at the low concentration. To achieve technical innovations and the development of specific testing protocols, one should possess a better knowledge on the mechanisms of substrate uptake at VOC concentrations.



  1. Ao, C.H., Lee, S.C. (2003) Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Applied Catalysis B: Environmental 44, 191-205.
  2. Ao, C.H., Lee, S.C. (2004) Combination effect of activated carbon with $TiO_{2}$ for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry 161, 131- 140.
  3. Bastani, A., Lee, C.-S., Haghighat, F., Flaherty, C., Lakdawala, N. (2010) Assessing the performance of air cleaning devices e A full-scale test method. Building and Environment 45, 143-149.
  4. Belver, C., Bellod, R., Fuerte, A., Fernandez-Garcia, M. (2006) Nitrogen-containing $TiO_{2}$ photocatalysts: Part 1. Synthesis and solid characterization. Applied Catalysis B: Environmental 65, 301-308.
  5. Benne, K., Griffith, B. (2009) Assessment of the energy impacts of outside air in the commercial sector. NREL/ TP-550-41955. Golden, CO, National Renewable Energy Laboratory.
  6. Brown, S.K. (1997) Volatile organic compounds in indoor air: sources and control. Chemistry in Australia 64, 10- 13.
  7. Burchett, M.D. (2005) Improving Indoor Environmental Quality Through the Use of Indoor Potted Plants. Final Report to Horticulture Australia Ltd, Sydney.
  8. Burchett, M.D., Torpy, F., Tarran, J. (2008) Interior plants for sustainable facility ecology and workplace productivity, Proceedings of Ideaction'08-Enabling Sustainable Communities, Qld.
  9. Cao, L.X., Gao, Z., Suib, S.L., Obee, T.N., Hay, S.O., Freihaut, J.D. (2000) Photocatalytic oxidation of toluene on nanoscale $TiO_{2}$ catalysts: studies of deactivation and regeneration. Journal of Catalysis 196, 253-261.
  10. Claudio, L. (2011) Planting Healthier Indoor Air. Environ Health Perspect. Available at:
  11. Das, D., Gaur, V., Verma, N. (2004) Removal of volatile organic compound by activated carbon fiber. Carbon 42, 2949-2962.
  12. Dombrowski, K.D., Lehmann, C.M.B., Sullivan, P.D., Ramirez, D., Rood, M.J., Hay, K.J. (2004) Organic vapor recovery and energy efficiency during electric regeneration of an activated carbon fiber cloth adsorber. Journal of Environmental Engineering 130(3), 268-275.
  13. Dvoranova, D., Brezova, V., Mazur, M., Malati, M.A. (2002) Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental 37, 91-105.
  14. Ekberg, L.A. (1994) Volatile organic compounds in office buildings. Atmospheric Environment 28, 3571-3575.
  15. Fisk, J.W. (2000) Review of health and productivity gains from better IEQ. In Proceedings of Health Buildings, August 6-10, SIY Indoor Air Information, Oy, Helsinki.
  16. Fisk, W.J. (2007) Can sorbent-based gas phase air cleaning for VOCs substitute for ventilation in commercial buildings? In Proceedings of the IAQ 2007 Healthy and Sustainable Buildings. Atlanta: ASHRAE.
  17. Fjeld, T. (2002) The effects of plants and artificial daylight on the well-being and health of office workers, school children and health-care personnel, Proceedings of International Plants for People Symposium, Floriade, Amsterdam, NL.
  18. Girman, J., Phillips, T., Levin, H. (2009) Critical review: how well do house plants perform as indoor air cleaners? Proceedings of Healthy Buildings 23, 667-672.
  19. Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., Revah, S. (2008) Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advances 26, 398-410.
  20. Haghighat, F., Lee, C.-S., Pant, B., Bolourani, G., Lakdawala, N., Bastani, A. (2008) Evaluation of various activated carbons for air cleaning towards design of immune and sustainable buildings. Atmospheric Environment 42, 8176-8184.
  21. Hodgson, A.T., Destaillats, H., Sullivan, D.P., Fisk, W.J. (2007) Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 17, 305-316.
  22. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. (1995) Environmental applicationof semiconductor photocatalysis. Chemistry Reviews 95, 69-96.
  23. Huang, Y.C., Luo, C.-H., Yang, S., Lin, Y.-C., Chuang, C.-Y. (2010) Improved removal of indoor volatile organic compounds by activated carbon fiber filters calcined with copper oxide catalyst. CLEAN-Soil, Air, Water 38(11), 993-997.
  24. Hudnell, H.K., Otto, D.A., House, D.E., Mølhave, L. (1992) Exposure of humans to a volatile organic mixture II. Sensory. Archives of Environmental Health 47, 31-38.
  25. Jo, W.K., Park, J.H., Chun, H.D. (2002) Photocatalytic destruction of VOCs for in-vehicle air cleaning. Journal of Photochemistry and Photobiology A: Chemistry 148, 109-119.
  26. Khoukhi, M., Yoshino, H., Liu, J. (2007) The effect of the wind speed velocity on the stack pressure in mediumrise buildings in cold region of China. Building and Environment 42, 1081-1088.
  27. Kim, S.B., Hong, S.C. (2002) Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film $TiO_{2}$ photocatlyst. Applied Catalysis B: Environmental 35, 305-315.
  28. Kirchnerova, J., Cohen, M.L.H., Guy, C., Klvana, D. (2005) Photocatalytic oxidation of nbutanol under fluorescent visible light lamp over commercial $TiO_{2}$ (Hombicat UV100 and Degussa P25). Applied Catalysis A: General 282, 321-332.
  29. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H. (2001) The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology 11, 231- 252.
  30. Kostiainen, R. (1995) Volatile organic compounds in the indoor air of normal and sick houses. Atmospheric Environment 29, 693-702.
  31. Li, D., Haneda, H., Hishita, S., Ohashi, N. (2005a) Visiblelight- driven nitrogen-doped $TiO_{2}$ photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Materials Science and Engineering: B 117, 67-75.
  32. Li, F.B., Li, X.Z., Ao, C.H., Lee, S.C., Hou, M.F. (2005b) Enhanced photocatalytic degradation of VOCs using $Ln^{3+}$-$TiO_{2}$ catalysts for indoor air purification. Chemosphere 59, 787-800.
  33. Liu, R.T. (1992) An in-situ regenerative adsorber for the control of indoor VOCs activated carbon fibers. Proceedings of IAQ'92. Atlanta: ASHRAE 257-261.
  34. Liu, X. (2007) Identification of appropriate CFD models for simulating aerosol particle and droplet indoor transport. Indoor and Built Environment 16, 322-330.
  35. Lorimier, C., Subrenat, A., Le-Coq, L., Le-Cloirec, P. (2005) Adsorption of toluene onto activated carbon fibre cloths and felts: application to indoor air treatment. Environmental Technology 26(11), 1217-1230.
  36. Lu, Y., Liu, J., Lu, B., Jiang, A., Wan, C. (2010) Study on the removal of indoor VOCs using biotechnology. Journal Hazardous Materials 182, 204-209.
  37. Miekisch, W., Schubert, J.K., Noeldge-Schomburg, G.F.E. (2004) Diagnostic potential of breath analysis-focus on volatile organic compounds. Clinica Chimica Acta 347, 25-39.
  38. Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zh, R. (2009) Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246.
  39. Newman, L.A., Reynolds, C.M. (2004) Phytodegradation of organic compounds. Current Opinion in Biotechnology 15, 225-230.
  40. Orwell, L.R., Wood, L.R., Tarran, J., Torpy, F., Burchett, D.M. (2004) Removal of benzene by the indoor plant/ substrate microorganism and implications for air quality. Water, Air, and Soil Pollution 157, 193-207.
  41. Orwell, R., Wood, R., Burchett, M., Tarran, J., Torpy, F. (2006) The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water, Air, and Soil Pollution 177, 59-80.
  42. Phillips, M. (1997) Method for the collection and assay of volatile organic compounds in breath. Analytical Biochemistry 247, 272-278.
  43. Pichat, P., Disdier, J., Hoang-Van, C., Mas, D., Goutailler, G., Gaysse, C. (2000) Purification/ deodorization of indoor air and gaseous effluents by $TiO_{2}$ photocatalysis. Catalysis Today 63, 363-369.
  44. Ramirez, D., Qi, S., Rood, M.J. (2005) Equilibrium and heat of adsorption for organic vapors and activated carbons. Environmental Science and Technology 39, 5864-5871.
  45. Robinson, J., Nelson, W.C. (1995) The National Human Activity Pattern Survey Data Base. Environmental Protection Agency (EPA), Research Triangle Park, NC.
  46. Runeson, R., Wahlstedt, K., Wieslander, G., Norback, D. (2006) Personal and psychosocial factors and symptoms compatible with sick building syndrome in the Swedish workforce. Indoor Air 16, 445-453.
  47. Salthammer, T. (1997) Emission of volatile organic compounds from furniture coatings. Indoor Air 7, 189-197.
  48. Sandhu, A., Halverson, L.J., Beattie, G.A. (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environmental Microbiology 9, 383-392.
  49. Schaffner, A., Messner, B., Langebartels, C., Sandermann, H. (2002) Genes and enzymes for inplanta phytoremediation of air, water and soil. Acta Biotechnologica 22, 141-52.<141::AID-ABIO141>3.0.CO;2-7
  50. Schmitz, H., Hilger, U., Weinder, M. (2000) Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytologist 147, 307-315.
  51. Shen, Y.S., Ku, Y. (2002) Decomposition of gas-phase trichloroethene by the UV/$TiO_{2}$ process in the presence of ozone. Chemosphere 46, 101-107.
  52. Shiraishi, F., Toyoda, K., Miyakawa, H. (2005) Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources-2. Reactor performance. Chemical Engineering Journal 114, 145- 151.
  53. Sidheswaran, M.A., Destaillats, H., Sullivan, D.P., Cohna, S., Fisk, W.F. (2012) Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters. Building and Environment 47, 357-367.
  54. Stevens, L., Lanning, J.A., Anderson, L.G., Jacoby, W.A., Chornet, N. (1998) Investigation of the photocatalytic oxidation of low-level carbonyl compounds. Journal of the Air & Waste Management Association 48, 979- 984.
  55. Strini, A., Cassese, S., Schiavi, L. (2005) Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B-Environmental 61, 90-97.
  56. Sundell, J. (2004). On the history of indoor air quality and health. Indoor Air 14, 51-58.
  57. Tarran, J., Torpy, F., Burchett, M. (2007) Use of living pot-plants to cleanse indoor air- Research Review. Proceedings of Sixth International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings-Sustainable Built Environment, Sendai, Japan, Volume III, 249-256.
  58. Tompkins, D.T., Lawnicki, B.J., Zeltner, W.A., Anderson, M.A. (2005) Evaluation of photocatalysis for gas-phase air cleaning-Part 1: process, technical and sizing considerations. ASHRAE Transactions 111, 60-64.
  59. Tucker, W.C. (2001) Volatile organic compounds in indoor air quality handbook. (e.d. J.D. Spengler, J.M. Samet, and J.F. McCarthy), McGraw-Hill, New York.
  60. USEPA (2002) Child-specific Exposure Factors Handbook. EPA/600/P-00/002B. U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC.
  61. Wang, S., Ang, H.M., Tade, M.O. (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33(5), 694-705.
  62. Wolkoff, P. (2003) Trends in Europe to reduce the indoor air pollution of VOCs. Indoor Air 13, 5-11.
  63. Wolkoff, P., Clausen, P.A., Jensen, B., Nielsen, G.D., Wilkins, C.K. (1997) Are we measuring the relevant indoor pollutants? Indoor Air 7, 92-106.
  64. Wolkoff, P., Nielsen, G.D. (2001) Organic compounds in indoor air their relevance for perceived indoor air quality? Atmospheric Environment 35, 4407-4417.
  65. Wood, R.A., Burchett, M.A., Alquezar, R., Orwell, R.L., Tarran, J., Torpy, F. (2006) The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut 175, 163-180.
  66. Wood, R.A., Orwell, R.L., Burchett, M.D., Tarran, J., Torpy, F. (2003) Pottedplant/growth media interactions and capacities for removal of volatiles from indoor air. In Proceedings of Healthy Buildings 2003, 7th International Healthy Buildings Conference (Tham, K.W., Sekhar, C. and Cheong, D. Eds.), National University of Singapore.
  67. Wolverton, B.C., Johnson, A., Bounds, K. (1989) Interior landscape plants for indoor air pollution abatement, National Aeronautics and Space Administration 1-22.
  68. Wolverton, B.C., McDonald, R.C., Watkins, Jr. E.A. (1984) Foliage plants for removing indoor air pollutants from energy-efficient homes. Economic Botany 38, 224-228.
  69. Wolverton, B.C., Wolverton, J.D. (1993) Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. Journal of the Mississippi Academy of Sciences 38(2), 11-15.
  70. Yang, D.S., Pennisi, S.V., Son, Ki-C, Kays, S.J. (2009) Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44, 1377-1381.
  71. Yao, M., Zhang, Q., Hand, D.W., Perram, D.L., Taylor, R. (2009a) Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations. Journal of the Air & Waste Management Association 59(7), 882-890.
  72. Yao, M., Zhang, Q., Hand, D.W., Perram, D.L., Taylor, R. (2009b) Adsorption and regeneration on activated carbon fiber cloth for volatile organic compounds at indoor concentration levels. Journal of the Air & Waste Management Association 59(1), 31-66.
  73. Yu, C., Crump, D. (1998) A review of the emission of VOCs from polymeric materials used in buildings. Building and Environment 33, 357-374.
  74. Yu, Q.L., Brouwers, H.J.H. (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied Catalysis B: Environmental 92, 454-461.
  75. Yu, Q.L., Brouwers, H.J.H., Ballari, M.M. (2009) Experimental study and modeling of the photocatalytic oxidation of NO in indoor conditions. 3rd international symposium on nanotechnology in construction, Prage, Czech Republic.
  76. Zhao, J., Yang, X. (2003) Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment 38, 645-654.

Cited by

  1. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect vol.21, pp.1, 2016,
  2. Indoor Air Contaminant Adsorption By Palm Shell Activated Carbon Filter – A Proposed Study vol.78, pp.2261-236X, 2016,
  3. Phytoremediation of Formaldehyde from Indoor Environment by Ornamental Plants: An Approach to Promote Occupants Health vol.9, pp.1, 2012,
  4. Evaluation of gas / solid photocatalytic performance for the removal of VOCs at ppb and sub-ppb levels vol.272, pp.None, 2012,