• Title/Summary/Keyword: Matrix Ring

Search Result 236, Processing Time 0.027 seconds

ANNIHILATING PROPERTY OF ZERO-DIVISORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.27-39
    • /
    • 2021
  • We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called right AP. We prove that a ring R is right AP if and only if Dn(R) is right AP for every n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R whose diagonals are equal. Properties of right AP rings are investigated in relation to nilradicals, prime factor rings and minimal order.

The Relation Between Units and Nilpotents

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.213-227
    • /
    • 2022
  • We discuss the relation between units and nilpotents of a ring, concentrating on the transitivity of units on nilpotents under regular group actions. We first prove that for a ring R, if U(R) is right transitive on N(R), then Köthe's conjecture holds for R, where U(R) and N(R) are the group of all units and the set of all nilpotents in R, respectively. A ring is called right UN-transitive if it satisfies this transitivity, as a generalization, a ring is called unilpotent-IFP if aU(R) ⊆ N(R) for all a ∈ N(R). We study the structures of right UN-transitive and unilpotent-IFP rings in relation to radicals, NI rings, unit-IFP rings, matrix rings and polynomial rings.

ON QB-IDEALS OF EXCHANGE RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.873-884
    • /
    • 2009
  • We characterize QB-ideals of exchange rings by means of quasi-invertible elements and annihilators. Further, we prove that every $2\times2$ matrix over such ideals of a regular ring admits a diagonal reduction by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

ON POLYGROUP HYPERRINGS AND REPRESENTATIONS OF POLYGROUPS

  • Davvaz, B.;Poursalavati, N.S.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1021-1031
    • /
    • 1999
  • In this paper we introduce matrix representations of polygroups over hyperrings and show such representations induce representations of the fundamental group over the corresponding fundamental ring. We also introduce the notion of a polygroup hyperring generalizing the notion of a group ring. We establish homo-morphisms among various polygroup hyperrings.

  • PDF

ON EXCHANGE IDEALS

  • CHEN, HUANYIN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.295-305
    • /
    • 2005
  • In this paper, we investigate exchange ideals and get some new characterization of exchange rings. It is shown that an ideal I of a ring R is an exchange ideal if and only if so is $QM_2$(I). Also we observe that every exchange ideal can be characterized by exchange elements.

THE UNITS AND IDEMPOTENTS IN THE GROUP RING OF ABELIAN GROUPS Z2×Z2×Z2 AND Z2×Z4

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • Let K be a algebraically closed field of characteristic 0 and G be abelian group $Z_2{\times}Z_2{\times}Z_2$ or $Z_2{\times}Z_4$. We find the conditions which the elements of the group ring KG are unit and idempotent respecting using the basic table matrix of G. We can see that if ${\alpha}={\sum}r(g)g$ is an idempotent element of KG, then $r(1)=0,\;\frac{1}{{\mid}G{\mid}},\;\frac{2}{{\mid}G{\mid}},\;{\cdots},\frac{{\mid}G{\mid}-1}{{\mid}G{\mid}},\;1$.

  • PDF

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS

  • Kwak, Tai Keun;Lee, Dong Su;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.495-507
    • /
    • 2014
  • Nielsen and Rege-Chhawchharia called a ring R right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, there exists a nonzero element r ${\in}$ R with f(x)r = 0. Hong et al. called a ring R strongly right McCoy if given nonzero polynomials f(x), g(x) over R with f(x)g(x) = 0, f(x)r = 0 for some nonzero r in the right ideal of R generated by the coefficients of g(x). Subsequently, Kim et al. observed similar conditions on linear polynomials by finding nonzero r's in various kinds of one-sided ideals generated by coefficients. But almost all results obtained by Kim et al. are concerned with the case of products of linear polynomials. In this paper we examine the nonzero annihilators in the products of general polynomials.

THE GENERAL LINEAR GROUP OVER A RING

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.619-626
    • /
    • 2006
  • Let m be any positive integer, R be a ring with identity, $M_m(R)$ be the matrix ring of all m by m matrices eve. R and $G_m(R)$ be the multiplicative group of all n by n nonsingular matrices in $M_m(R)$. In this pape., the following are investigated: (1) for any pairwise coprime ideals ${I_1,\;I_2,\;...,\;I_n}$ in a ring R, $M_m(R/(I_1{\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $M_m(R/I_1){\times}M_m(R/I_2){\times}...{\times}M_m(R/I_n);$ and $G_m(R/I_1){\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $G_m(R/I_1){\times}G_m(R/I_2){\times}...{\times}G_m(R/I_n);$ (2) In particular, if R is a finite ring with identity, then the order of $G_m(R)$ can be computed.

ON NI AND QUASI-NI RINGS

  • Kim, Dong Hwa;Lee, Seung Ick;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2016
  • Let R be a ring. It is well-known that R is NI if and only if ${\sum}^n_{i=0}Ra_i$ is a nil ideal of R whenever a polynomial ${\sum}^n_{i=0}a_ix^i$ is nilpotent, where x is an indeterminate over R. We consider a condition which is similar to the preceding one: ${\sum}^n_{i=0}Ra_iR$ contains a nonzero nil ideal of R whenever ${\sum}^n_{i=0}a_ix^i$ over R is nilpotent. A ring will be said to be quasi-NI if it satises this condition. The structure of quasi-NI rings is observed, and various examples are given to situations which raised naturally in the process.