• Title/Summary/Keyword: Mathematics education using artificial intelligence

Search Result 33, Processing Time 0.017 seconds

Applications and Possibilities of Artificial Intelligence in Mathematics Education (수학교육에서 인공지능 활용 가능성)

  • Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.34 no.4
    • /
    • pp.545-561
    • /
    • 2020
  • The purpose of this study is to investigate the applications and possibilities of major programs that provide services using artificial intelligence in mathematics education. For this study, related papers, reports, and materials were collected and analyzed, focusing on materials mostly published within the last five years. The researcher searched the keywords of "artificial intelligence", "artificial intelligence", "AI" and "mathematics education" independently or in combination. As a result of the study, artificial intelligence for mathematics education was mostly supporting learners' personalized mathematics learning, defining it as an auxiliary role to support human mathematics teachers, and upgrading the technology of not only cognitive aspects but also affective aspects. As suggestions, the researcher argued that followings are necessary: Research for the establishment of an elaborate artificial intelligence mathematical system, discovery of artificial intelligence technology for appropriate use to support mathematics education, development of high quality of mathematics contents for artificial intelligence, and the establishment and operation of a cloud-based comprehensive system for mathematics education. The researcher proposed that continuous research to effectively help students study mathematics using artificial intelligence including students' emotional or empathetic abilities, and collaborative learning, which is only possible in offline environments. Also, the researcher suggested that more sophisticated materials should be developed for designing mathematics teaching and learning by using artificial intelligence.

Development and application of artificial intelligence education program for mathematics convergence using robots (로봇을 활용한 수학 융합 인공지능 프로그램 개발 및 적용: 4학년 '각도'와 '사각형' 단원을 중심으로)

  • Choi, Sun Young;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.19-38
    • /
    • 2024
  • This study aims to analyze the characteristics of students' understanding of artificial intelligence and mathematical concepts by developing and applying an artificial intelligence education program for mathematics convergence using robots. To this end, we analyzed the content standards of elementary artificial intelligence education to extract conceptual elements of artificial intelligence and identified mathematics achievement standards that can effectively integrate them. In particular, a five-session (15 classes in total) program was developed by selecting the units 'angle' and 'quadrilateral' suitable for utilizing the robot's movement and reorganizing the lesson to integrate the mathematics achievement standard with the artificial intelligence content elements. As a result of applying this to 22 fourth grade elementary school students over five months and analyzing the students' understanding revealed by topic of artificial intelligence content, the artificial intelligence education program for mathematics convergence using robots was helpful in students' understanding artificial intelligence principles and mathematical concepts. In addition, the use of robots was confirmed to improve students' understanding of artificial intelligence and mathematics as well as their participation in class by making them visually check a series of performing procedures.

Exploring teaching and learning methods using artificial intelligence (AI) in the mathematics classroom : Focusing on the development of middle school statistic scenarios (수학교실에서 인공지능(AI)을 활용한 교수학습 방안 탐색 : 중학교 통계 단원 시나리오 개발을 중심으로)

  • Choi, Inseon
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.2
    • /
    • pp.149-174
    • /
    • 2022
  • The purpose of this study is to explore the teaching and learning method using artificial intelligence (AI) in the mathematics classroom. To this end, to predict the direction of mathematics education using AI in the mathematics classroom, this study investigates the fields where AI is applied to education, and discuss issues to consider when introducing AI through scenario development using AI in middle school statistics. This study is meaningful in that it specifically considered how artificial intelligence can be grafted into the mathematics classroom through the development of scenarios that integrate and apply artificial intelligence that has been developed and used segmentally in the current middle school statistics. Afterwards, based on the contents of this study, implications for using AI in the math classroom were derived.

An analysis of perceptions of elementary teachers and secondary mathematics teachers on the use of artificial intelligence (AI) in mathematics education (수학교육에서 인공지능 활용에 대한 초등 교사와 중등 수학 교사의 인식 분석)

  • JeongWon Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.351-368
    • /
    • 2024
  • One of the important factors for the effective implementation of artificial intelligence (AI) in mathematics education is the perceptions of the teachers who adopt it. This study surveyed 161 elementary school teachers and 157 secondary mathematics teachers on their perceptions of using AI in mathematics education, grouped into four categories: attitude toward using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics. The findings showed that teachers were most positive about using AI for teaching and learning mathematics, whereas their attitudes towards using AI were less favorable. In addition, elementary school teachers demonstrated a higher positive response rate across all categories compared to secondary mathematics teachers, who exhibited more neutral perceptions. Based on the results, we discussed the pedagogical implications for teachers to effectively use AI in mathematics education.

Transforming mathematics education with AI: Innovations, implementations, and insights

  • Sheunghyun Yeo;Jewoong Moon;Dong-Joong Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.387-392
    • /
    • 2024
  • The use of artificial intelligence (AI) in mathematics education has advanced as a means for promoting understanding of mathematical concepts, academic achievement, computational thinking, and problem-solving. From a total of 13 studies in this special issue, this editorial reveals threads of potential and future directions to advance mathematics education with the integration of AI. We generated five themes as follows: (1) using ChatGPT for learning mathematical content, (2) automated grading systems, (3) statistical literacy and computational thinking, (4) integration of AI and digital technology into mathematics lessons and resources, and (5) teachers' perceptions of AI education. These themes elaborate on the benefits and opportunities of integrating AI in teaching and learning mathematics. In addition, the themes suggest practical implementations of AI for developing students' computational thinking and teachers' expertise.

Preservice Teachers' Beliefs about Integrating Artificial Intelligence in Mathematics Education: A Scale Development Study

  • Sunghwan Hwang
    • Research in Mathematical Education
    • /
    • v.26 no.4
    • /
    • pp.333-349
    • /
    • 2023
  • Recently, AI has become a crucial tool in mathematics education due to advances in machine learning and deep learning. Considering the importance of AI, examining teachers' beliefs about AI in mathematics education (AIME) is crucial, as these beliefs affect their instruction and student learning experiences. The present study developed a scale to measure preservice teachers' (PST) beliefs about AIME through factor analysis and rigorous reliability and validity analyses. The study analyzed 202 PST's data and developed a scale comprising three factors and 11 items. The first factor gauges PSTs' beliefs regarding their roles in using AI for mathematics education (4 items), the second factor assesses PSTs' beliefs about using AI for mathematics teaching (3 items), and the third factor explores PSTs' beliefs about AI for mathematics learning (4 items). Moreover, the outcomes of confirmatory factor analysis affirm that the three-factor model outperforms other models (a one-factor or a two-factor model). These findings are in line with previous scales examining mathematics teacher beliefs, reinforcing the notion that such beliefs are multifaceted and developed through diverse experiences. Descriptive analysis reveals that overall PSTs exhibit positive beliefs about AIME. However, they show relatively lower levels of beliefs about their roles in using AI for mathematics education. Practical and theoretical implications are discussed.

An Analysis of 'Related Learning Elements' Reflected in Textbooks (<인공지능 수학> 교과서의 '관련 학습 요소' 반영 내용 분석)

  • Kwon, Oh Nam;Lee, Kyungwon;Oh, Se Jun;Park, Jung Sook
    • Communications of Mathematical Education
    • /
    • v.35 no.4
    • /
    • pp.445-473
    • /
    • 2021
  • The purpose of this study is to derive implications for the design of the next curriculum by analyzing the textbooks designed as a new subject in the 2015 revised curriculum. In the mathematics curriculum documents of , 'related learning elements' are presented instead of 'learning elements'. 'Related learning elements' are defined as mathematical concepts or principles that can be used in the context of artificial intelligence, but there are no specific restrictions on the amount and scope of dealing with 'related learning elements'. Accordingly, the aspects of 'related learning elements' reflected in the textbooks were analyzed focusing on the textbook format, the amount and scope of contents, and the ways of using technological tools. There were differences in the format of describing 'related learning elements' in the textbook by textbook and the amount and scope of handling mathematics concepts. Although similar technological tools were dealt with in each textbook so that 'related learning elements' could be used in the context of artificial intelligence, the focus was on computations and interpretation of results. In order to fully reflect the intention of the curriculum in textbooks, a systematic discussion on 'related learning elements' will be necessary. Additionally, in order for students to experience the use of mathematics in artificial intelligence, substantialized activities that can set and solve problems using technological tools should be included in textbooks.

Elementary School Teachers' Perceptions of Using Artificial Intelligence in Mathematics Education (수학교육에서의 인공지능 활용에 대한 초등 교사의 인식 탐색)

  • Kim, JeongWon;Kwon, Minsung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.299-316
    • /
    • 2023
  • With the importance and necessity of using AI in the field of education, this study aims to explore elementary school teachers' perceptions of using Artificial Intelligence (AI) in mathematics education. For this purpose, we conducted a survey using a 5-point Likert scale with 161 elementary school teachers and analyzed their perceptions of mathematics education with AI via four categories (i.e., Attitude of using AI, AI for teaching mathematics, AI for learning mathematics, and AI for assessing mathematics performance). As a result, elementary school teachers displayed positive perceptions of the usefulness of AI applications to teaching, learning, and assessment of mathematics. Specifically, they strongly agreed that AI could assist personalized teaching and learning, supplement prerequisite learning, and analyze the results of assessment. They also agreed that AI in mathematics education would not replace the teacher's role. The results of this study also showed that the teachers exhibited diverse perceptions ranging from negative to neutral to positive. The teachers reported that they were less confident and prepared to teach mathematics using AI, with significant differences in their perceptions depending on whether they enacted mathematics lessons with AI or received professional training courses related to AI. We discuss the implications for the role of teachers and pedagogical supports to effectively utilize AI in mathematics education.

An Analysis of the International Trends of Research on Artificial Intelligence in Education Using Topic Modeling (인공지능 활용 교육의 토픽모델링 분석을 통한 수학교육 연구 방향의 함의)

  • Noh, Jihwa;Ko, Ho Kyoung;Kim, Byeongsoo;Huh, Nan
    • Journal of the Korean School Mathematics Society
    • /
    • v.26 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • This study analyzed the international trends of research concerning artificial intelligence in education by examining 352 papers recently published in the International Journal of Artificial Intelligence in Education(IJAIED) with the topic modeling method. The IJAIED is the official, SCOPUS-indexed journal of the International AIED Society. The analysis revealed that international AIED research trends could be categorized into eight topics with topics such as analyzing student behavior model in learning systems and designing feedback to student solutions being increased over time, whereas research focusing on data handling methods was decreased over time. Based on the findings implications and suggestions for the research and development of the applications of AIED were provided.

Guidelines for big data projects in artificial intelligence mathematics education (인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인)

  • Lee, Junghwa;Han, Chaereen;Lim, Woong
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.289-302
    • /
    • 2023
  • In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.