• Title/Summary/Keyword: Mathematics and Economics

Search Result 189, Processing Time 0.033 seconds

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS

  • Al-Kharsani, Huda A.;Baricz, Arpad;Nisar, Kottakkaran S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.127-138
    • /
    • 2016
  • Differential subordination and superordination preserving properties for univalent functions in the open unit disk with an operator involving generalized Bessel functions are derived. Some particular cases involving trigonometric functions of our main results are also pointed out.

OPERATOR FRACTIONAL BROWNIAN SHEET AND MARTINGALE DIFFERENCES

  • Dai, Hongshuai;Shen, Guangjun;Xia, Liangwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.9-23
    • /
    • 2018
  • In this paper, inspired by the fractional Brownian sheet of Riemann-Liouville type, we introduce the operator fractional Brownian sheet of Riemman-Liouville type, and study some properties of it. We also present an approximation in law to it based on the martingale differences.

Paradigm and Pan-paradigm in Mathematics and Architecture (수학과 건축의 패러다임과 범 패러다임)

  • Kye, Young Hee
    • Communications of Mathematical Education
    • /
    • v.27 no.2
    • /
    • pp.165-177
    • /
    • 2013
  • Mathematics teaching is often more effective when teachers connect the contents of mathematics with history, culture, and social events. In the history of mathematics, the 'paradigm' theory from Thomas Kuhn's scientific revolution is very effective to explain the revolutionary process of development in mathematics, and his theory has been widely quoted in the history of science and economics. However, it has not been appropriate to use his theory in the other fields. This is due to the fact that the scope of Kuhn's paradigm theory is limited to mathematics and science. In this study, this researcher introduced pan-paradigm as a general concept that encompasses all, since through any relation in the field of mathematics and architecture, Thomas Kuhn's theory of paradigm does not explain the phenomena. That is, at the root of various cultures there exist always a 'collective unconsciousness' and 'demands of the times,' and these two factors by synergism form values and controlling principles common to various parts of the culture, and this synergism leads the cultural activities, the process of which is a phenomenon called pan-paradigm.

On the browder-hartman-stampacchia variational inequality

  • Chang, S.S.;Ha, K.S.;Cho, Y.J.;Zhang, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.493-507
    • /
    • 1995
  • The Hartman-Stampacchia variational inequality was first suggested and studied by Hartman and Stampacchia [8] in finite dimensional spaces during the time establishing the base of variational inequality theory in 1960s [4]. Then it was generalized by Lions et al. [6], [9], [10], Browder [3] and others to the case of infinite dimensional inequality [3], [9], [10], and the results concerning this variational inequality have been applied to many important problems, i.e., mechanics, control theory, game theory, differential equations, optimizations, mathematical economics [1], [2], [6], [9], [10]. Recently, the Browder-Hartman-Stampaccnia variational inequality was extended to the case of set-valued monotone mappings in reflexive Banach sapces by Shih-Tan [11] and Chang [5], and under different conditions, they proved some existence theorems of solutions of this variational inequality.

  • PDF

A Stage-Structured Predator-Prey System with Time Delay and Beddington-DeAngelis Functional Response

  • Wang, Lingshu;Xu, Rui;Feng, Guanghui
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.605-618
    • /
    • 2009
  • A stage-structured predator-prey system with time delay and Beddington-DeAngelis functional response is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated. The existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results.

THE H1-UNIFORM ATTRACTOR FOR THE 2D NON-AUTONOMOUS TROPICAL CLIMATE MODEL ON SOME UNBOUNDED DOMAINS

  • Pigong, Han;Keke, Lei;Chenggang, Liu;Xuewen, Wang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1439-1470
    • /
    • 2022
  • In this paper, we study the uniform attractor of the 2D nonautonomous tropical climate model in an arbitrary unbounded domain on which the Poincaré inequality holds. We prove that the uniform attractor is compact not only in the L2-spaces but also in the H1-spaces. Our proof is based on the concept of asymptotical compactness. Finally, for the quasiperiodical external force case, the dimension estimates of such a uniform attractor are also obtained.

BL-ALGEBRAS DEFINED BY AN OPERATOR

  • Oner, Tahsin;Katican, Tugce;Saeid, Arsham Borumand
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.165-178
    • /
    • 2022
  • In this paper, Sheffer stroke BL-algebra and its properties are investigated. It is shown that a Cartesian product of two Sheffer stroke BL-algebras is a Sheffer stroke BL-algebra. After describing a filter of Sheffer stroke BL-algebra, a congruence relation on a Sheffer stroke BL-algebra is defined via its filter, and quotient of a Sheffer stroke BL-algebra is constructed via a congruence relation. Also, it is defined a homomorphism between Sheffer stroke BL-algebras and is presented its properties. Thus, it is stated that the class of Sheffer stroke BL-algebras forms a variety.

STABILIZERS ON SHEFFER STROKE BL-ALGEBRAS

  • Katican, Tugce;Oner, Tahsin;Saeid, Arsham Borumand
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.78-97
    • /
    • 2022
  • In this study, new properties of various filters on a Sheffer stroke BL-algebra are studied. Then some new results in filters of Sheffer stroke BL-algebras are given. Also, stabilizers of nonempty subsets of Sheffer stroke BL-algebras are defined and some properties are examined. Moreover, it is shown that the stabilizer of a filter with respect to a/n (ultra) filter of a Sheffer stroke BL-algebra is its (ultra) filter. It is proved that the stabilizer of the subset {0} of a Sheffer stroke BL-algebra is {1}. Finally, it is stated that the stabilizer St(P, Q) of P with respect to Q is an ultra filter of a Sheffer stroke BL-algebra when P is any filter and Q is an ultra filter of this algebra.

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.