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Abstract. A stage-structured predator-prey system with time delay and Beddington-

DeAngelis functional response is considered. By analyzing the corresponding characteristic

equation, the local stability of a positive equilibrium is investigated. The existence of Hopf

bifurcations is established. Formulae are derived to determine the direction of bifurcations

and the stability of bifurcating periodic solutions by using the normal form theory and

center manifold theorem. Numerical simulations are carried out to illustrate the theoretical

results.

1. Introduction

The predator-prey system is very important in population modelling and has
been studied by many authors (see, for example, [1], [2], [4], [7], [9]). A generic
predator-prey model takes the form

(1.1)

{
ẋ = xf(x)− yp(x),
ẏ = kyp(x)− yg(y),
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where x(t) and y(t) are the densities of prey and predator populations at time
t, respectively. The function f(x) represents the growth rate of the prey; g(y)
represents the death rate and intra-specific competition rate of the predator; p(x)
denotes the predator response function. The most popular functional responses used
in the modelling of predator-prey systems are the Michaelis-Menten type p(x) =
x/(c + x) and ratio-dependent type p(x) = x/(x + by). The Michaelis-Menten
type does not account for the mutual competitions among predators [9], while the
ratio-dependent type allows unrealistic positive growth rate of the predator at low
densities [2], [7]. The Beddington-DeAngelis functional response p(x) = x/(1+bx+
cy) was introduced independently by Beddington [1] and DeAngelis [4] as a solution
of the observed problems in the classical predator-prey theory. It has an extra term
in the denominator which models mutual interference between predators and avoids
the “low densities problem” of the ratio-dependent type functional response.

We note that in the models mentioned above, it is assumed that both the
immature and the mature predators have the same ability to attack prey individuals.
However, in the real world, almost all animals have stage structure of immature
and mature, and only mature predators can attack prey and have reproductive
ability. Stage-structured models have received great attention in recent years (see,
for example, [11], [12]). In [11], Sun studied the following predator-prey model with
Beddington-DeAngelis functional response

(1.2)


ẋ(t) = rx(t)− ax2(t)− a1x(t)y2(t)

1 + bx(t) + cy2(t)
,

ẏ1(t) =
ka1x(t)y2(t)

1 + bx(t) + cy2(t)
− (r1 + d)y1(t),

ẏ2(t) = dy1(t)− r2y2(t),

where x(t) is the density of the prey population at time t, y1(t) and y2(t) are
the densities of the immature and mature predators at time t, respectively. The
parameters a, a1, b, c, d, k, r, r1 and r2 are positive constants, where a is the
intra-specific competition rate of the prey, a1 is the capturing rate of the predator,
k is the conversion rate of nutrients into the reproduction of the predator, d is the
rate of immature predator becoming mature predator, r represents the intrinsic
growth rate of the prey, r1(r2) is the death rate of the immature(mature) predator.
In [11], Sun systematically studied system (1.2) and obtained conditions for the
permanence of predator and the existence of periodic orbit.

It is generally recognized that some kinds of time delays are inevitable in pop-
ulation interactions and tend to be destabilizing in the sense that longer delays
may destroy the stability of positive equilibria. Time delay due to the gestation
is a common example, because generally the consumption of prey by the predator
throughout its past history governs the present birth rate of the predator. Recently,
great attention has been received and a large body of work has been carried out on
the existence of Hopf bifurcations in delayed population models (see, for example,
[8], [10] and references cited therein). The stability of positive equilibria and the
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existence and the direction of Hopf bifurcations were discussed respectively in the
references mentioned above.

In this paper, we are concerned with the effect of time delay on the dynamics
of system (1.2). To this aim, we consider the following delay differential equations

(1.3)


ẋ(t) = rx(t)− ax2(t)− a1x(t)y2(t)

1 + bx(t) + cy2(t)
,

ẏ1(t) =
ka1x(t− τ)y2(t− τ)

1 + bx(t− τ) + cy2(t− τ)
− (r1 + d)y1(t),

ẏ2(t) = dy1(t)− r2y2(t),

where τ ≥ 0 is a constant representing a time delay due to the gestation of the
predator.

The initial conditions for system (1.3) take the form

x(θ) = ϕ1(θ) ≥ 0, y1(θ) = ϕ2(θ) ≥ 0, y2(θ) = ϕ3(θ) ≥ 0, θ ∈ [−τ, 0),
ϕ1(0) > 0, ϕ2(0) > 0, ϕ3(0) > 0, (ϕ1(θ), ϕ2(θ), ϕ3(θ)) ∈ C([−τ, 0], R3

+0),

where R3
+0 = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}.

The organization of this paper is as follows. In the next section, by choosing the
time delay τ as a parameter and analyzing the associated characteristic equation
of a linearized system, we investigate the linear stability of the positive equilib-
rium of system (1.3). In addition, we get sufficient conditions for the existence of
Hopf bifurcations. In Section 3, we derive formulae to determine the direction of
bifurcations and the stability of bifurcating periodic solutions by using the normal
form theory and center manifold theorem. Numerical simulations are carried out in
Section 4 to illustrate the theoretical results.

2. Local stability and Hopf bifurcations

In this section, we discuss the stability of a positive equilibrium and the exis-
tence of Hopf bifurcations for system (1.3) with time delay τ as a parameter.

Assume

(H1) 0 <
r2(r1 + d)

dka1 − br2(r1 + d)
<
r

a
.

It is easy to check that system (1.3) has a positive equilibrium E = (x∗, y1∗, y2∗),
where

x∗ =M +Ny1∗, y1∗ =
−(r1 + d− krN + 2kaMN) +

√
△

2kaN2
, y2∗ =

d

r2
y1∗,

M =
r2(r1 + d)

dka1 − br2(r1 + d)
, N =

cd(r1 + d)

dka1 − br2(r1 + d)
,

△ = (r1 + d− krN + 2kaMN)2 − 4ak2MN2(aM − r).

Let x̄ = x− x∗, ȳ1 = y1 − y1∗, ȳ2 = y2 − y2∗. Dropping the bars, system (1.3)
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becomes
(2.1)

ẋ(t) = (r − 2ax∗ −A)x(t)−By2(t)− ax2(t) +
bAx2(t) + cBy22(t)− Cx(t)y2(t)

1 + bx∗ + cy2∗ + bx(t) + cy2(t)
,

ẏ1(t) = −kbAx
2(t− τ) + kcBy22(t− τ)− kCx(t− τ)y2(t− τ)

1 + bx∗ + cy2∗ + bx(t− τ) + cy2(t− τ)

−(r1 + d)y1(t) + kAx(t− τ) + kBy2(t− τ),

ẏ2(t) = dy1(t)− r2y2(t),

where

A =
a1y2∗(1 + cy2∗)

(1 + bx∗ + cy2∗)2
, B =

a1x∗(1 + bx∗)

(1 + bx∗ + cy2∗)2
, C =

a1(1 + bx∗ + cy2∗ + 2bcx∗y2∗)

(1 + bx∗ + cy2∗)2
.

The characteristic equation of system (2.1) at the origin is of the form

(2.2) λ3 + p2λ
2 + p1λ+ p0 + (q1λ+ q0)e

−λτ = 0,

where
(2.3)
p0 = r2(r1 + d)(2ax∗ +A− r), p1 = r2(r1 + d) + (r2 + r1 + d)(2ax∗ +A− r),
p2 = r2 + r1 + d+ 2ax∗ +A− r, q0 = kdB(r − 2ax∗), q1 = −kdB.

When τ = 0, equation (2.2) becomes

(2.4) λ3 + p2λ
2 + (p1 + q1)λ+ p0 + q0 = 0,

Assume
(H2) 0 < r − 2ax∗ < A < 2(r − 2ax∗),
(H3) p2(p1 + q1) > p0 + q0.

This assumption implies that

p2 > 0, p0 + q0 > 0,

p2(p1 + q1)− (p0 + q0) > 0.

By Hurwitz criterion, we know that all roots of equation (2.4) are negative.
When τ > 0, noting that iω(ω > 0) is a root of (2.2) if and only if ω satisfies

(2.5)

{
q1ω cosωτ − q0 sinωτ = ω3 − p1ω,

q1ω sinωτ + q0 cosωτ = p2ω
2 − p0.

Squaring and adding equations in (2.5) gives

(2.6) ω6 + h2ω
4 + h1ω

2 + h0 = 0,
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where

h0 = p20 − q20 , h1 = p21 − q21 − 2p0p2, h2 = p22 − 2p1.

For equation (2.6), if (H2) holds, we have

(2.7)

h0 < (p0 + q0)r2(r1 + d)[A− 2(r − 2ax∗)] < 0,

h1 > [r22 + (r1 + d)2](2ax∗ +A− r)2 > 0,

h2 = r22 + (r1 + d)2 + (2ax∗ +A− r)2 > 0.

Hence, the number of positive real roots is not more than one by Descartes’rule of
signs. On the other hand, let z = ω2, f(z) = z3 + h2z

2 + h1z + h0, we have

f(0) = h0 < 0,
lim

z→+∞
f(z) = +∞

Then, the equations (2.6) has at least one positive real root. Hence, the equations
(2.6) has only one positive real root ω0. Let

(2.8) τj =
1

ω0
arcsin(

(p2q1 − q0)ω
3
0 + (p1q0 − p0q1)ω0

q21ω
2
0 + q20

) +
2πj

ω0
, j = 0, 1, 2, · · · ,

then equation (2.2) has a pair of purely imaginary roots ±iω0 with τ = τj .

Lemma 2.1. For equation (2.2), if (H2) holds, then we have the following transver-
sal condition

Re

(
dλ

dτ

∣∣∣∣
λ=iω0

)
> 0.

Proof. Differentiating both sides of (2.2) with respect to τ yields

[3λ2 + 2p2λ+ p1 + (q1 − q1τλ− q0τ)e
−λτ ]

dλ

dτ
= λ(q1λ+ q0)e

−λτ .

For convenience, we study (dλ/dτ)−1 instead of dλ/dτ . We have

(
dλ

dτ

)−1

=
3λ2 + 2p2λ+ p1 + q1e

−λτ

λ(q1λ+ q0)e−λτ
− τ

λ

= − 3λ2 + 2p2λ+ p1
λ(λ3 + p2λ2 + p1λ+ p0)

+
q1

λ(q1λ+ q0)
− τ

λ
.
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Hence,

Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω0

=
3ω4

0 + 2(p22 − 2p1)ω
2
0 + p21 − 2p0p2

ω6
0 + (p22 − 2p1)ω4

0 + (p21 − 2p0p2)ω2
0 + p20

− q21
q21ω

2
0 + q20

=
3ω4

0 + 2(p22 − 2p1)ω
2
0 + p21 − q21 − 2p0p2

q21ω
2
0 + q20

=
3ω4

0 + 2h2ω
2
0 + h1

q21ω
2
0 + q20

> 0

Therefore,

sign

{
Re

(
dλ

dτ

)∣∣∣∣
λ=iω0

}
= sign

{
Re

(
dλ

dτ

)−1
∣∣∣∣∣
λ=iω0

}
> 0.

This completes the proof of lemma 2.1. �

From Lemma 2.1 and the results in [3], we have the following result.

Lemma 2.2. Assume (H1), (H2) and (H3) hold, then

(i) when τ ∈ [0, τ0), all roots of equation (2.2) have strictly negative real parts.

(ii) when τ = τ0, equation (2.2) has a pair of conjugate purely imaginary roots
±iω0, and all other roots have strictly negative real parts.

(iii) when τ > τ0, equation (2.2) has at least one root with positive real part.

Applying lemma 2.2, we have the following result.

Theorem 2.1. For system (2.1), if (H1), (H2) and (H3) are satisfied, then

(i) when τ ∈ [0, τ0), the zero solution is asymptotically stable;

(ii) when τ > τ0, the zero solution is unstable;

(iii) τ = τj(j = 0, 1, 2, ···) are the values of Hopf bifurcations , where τj are defined
by (2.8).

3. Direction and stability of Hopf bifurcations

In the previous section, we obtained conditions under which a family of peri-
odic solutions bifurcate from the positive equilibrium at the critical values τj(j =
0, 1, 2, · · ·). In this section, we study the direction of bifurcations and the stability
of bifurcating periodic solutions. The method we used here is based on the normal
form theory and center manifold theory introduced by Hassard et al. in [5].
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Now, we re-scale the time by t = sτ , x̂(s) = x(sτ), ŷ1(s) = y1(sτ), ŷ2(s) =
y2(sτ), τ = τ0 + µ, µ ∈ R, and still denoting by x(t) = x̂(s), y1(t) = ŷ1(s),
y2(t) = ŷ2(s), then system (2.1) can be written as

(3.1)



ẋ(t) = (τ0 + µ)[(r − 2ax∗ −A)x(t)−By2(t)− ax2(t)

+
bAx2(t) + cBy22(t)− Cx(t)y2(t)

1 + bx∗ + cy2∗ + bx(t) + cy2(t)
],

ẏ1(t) = (τ0 + µ)[−kbAx
2(t− 1) + kcBy22(t− 1)− kCx(t− 1)y2(t− 1)

1 + bx∗ + cy2∗ + bx(t− 1) + cy2(t− 1)

−(r1 + d)y1(t) + kAx(t− 1) + kBy2(t− 1)],

ẏ2(t) = (τ0 + µ)[dy1(t)− r2y2(t)].

For φ = (φ0, φ1, φ2)
T ∈ C[−1, 0] = C([−1, 0], R3), define a family of operators

(3.2) Lµφ = B1φ(0) +B2φ(−1) ,

where

B1 = (τ0+µ)

 r − 2ax∗ −A 0 −B
0 −(r1 + d) 0
0 d −r2

 , B2 = (τ0+µ)

 0 0 0
kA 0 kB
0 0 0

 .

And define

f(µ, φ) = (τ0 + µ)


−aφ2

0(0) +
bAφ2

0(0) + cBφ2
2(0)− Cφ0(0)φ2(0)

1 + bx∗ + cy2∗ + bφ0(0) + cφ2(0)

−kbAφ
2
0(−1) + kcBφ2

2(−1))− kCφ0(−1)φ2(−1)

1 + bx∗ + cy2∗ + bφ0(−1) + cφ2(−1)

0

 .

By the Riesz representation theorem, there exists a matrix whose components
are bounded variation functions η(θ, µ) : [−1, 0] → R3, such that Lµφ =∫ 0

−1
dη(θ, µ)φ(θ). In fact, we can choose

η(θ, µ) =

 0, θ = −1,
B2, θ ∈ (−1, 0),
B1 +B2, θ = 0.

For φ = (φ0, φ1, φ2)
T ∈ C1[−1, 0], define

(3.3) A(µ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(s, µ)φ(s) , θ = 0,

and

(3.4) R(µ)φ =

{
0 , θ ∈ [−1, 0),
f(µ, φ) , θ = 0.
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Hence, equation (3.1) can be rewritten as

(3.5) U̇t = A(µ)Ut +R(µ)Ut ,

where U = (x, y1, y2)
T. For ψ ∈ C1[0, 1], define

(3.6) A∗ψ(s) =

 −dψ(s)

ds
, s ∈ [−1, 0),∫ 0

−1
dηT (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0] , C3) and ψ ∈ C([0, 1] , (C3)∗), define a bilinear inner product

< ψ,φ >= ψ
T
(0)φ(0)−

0∫
θ=−1

θ∫
ξ=0

ψ
T
(ξ − θ)dη(θ)φ(ξ)dξ ,

where η(θ) = η(θ, 0). Then, A = A(0) and A∗ are adjoint operators. By discussion
in Section 2 and transformation t = sτ , we know that ±iτ0ω0 are eigenvalues of
A. Thus, they are also eigenvalues of A∗. Direct computation yields the following
result.

Lemma 3.1. q(θ) = (1, q2, q3)
Teiτ0ω0θ and q∗(s) = D̄(1, q∗2 , q

∗
3)

Teiτ0ω0s are
eigenvectors of A and A∗ corresponding to iτ0ω0 and −iτ0ω0, respectively, and
< q∗(θ), q(θ) >= 1 , < q∗(θ), q(θ) >= 0, where

q2 =
ω2
0 + r2(r − 2ax∗ −A) + i(r − 2ax∗ −A− r2)ω0

Bd
,

q3 =
r − 2ax∗ −A− iω0

βγ
,

q∗2 =
2ax∗ +A− r − iω0

kA
e−iτ0ω0 ,

q∗3 =
−ω2

0 + (r1 + d)(2ax∗ +A− r)− i(2ax∗ +A− r + r1 + d)ω0

kdA
e−iτ0ω0 ,

D = [1 + q2q̄
∗
2 + q3q̄

∗
3 + τ0(kAq̄

∗
2 + kBq3q̄3

∗)]−1.

Now we compute the coordinates to describe the center manifold C0 at µ = 0.
Let Ut be the solution of equation (3.5) when µ = 0, and define

(3.7) z(t) =< q∗, Ut >, W (t, θ) = Ut(θ)− 2Re{z(t)q(θ)}.

On the center manifold C0, we have W (t, θ) =W (z(t), z̄(t), θ), where

(3.8) W (z, z, θ) =W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · .
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z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗.
Note that W is real if Ut is real, we consider only real solutions. For the solution
Ut ∈ C0, since µ = 0, then

(3.9) ż(t) = iτ0ω0z(t) + q∗(0)f0(z, z).

We rewrite this equation as ż(t) = iτ0ω0z(t) + g(z, z) with

(3.10) g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · .

By (3.7), we have

Ut(θ) = W (z, z̄, θ) + zq(θ) + z̄q̄(θ)

=

 W (0)(z, z̄, θ)
W (1)(z, z̄, θ)
W (2)(z, z̄, θ)

+ z

 1
q2
q3

 eiτ0ω0θ + z̄

 1
q̄2
q̄3

 e−iτ0ω0θ.

Hence,

g(z, z̄) = q̄∗(0)f0(z, z̄) = q̄∗(0)f(0, Ut)

Substitute Ut(θ) into above and comparing the coefficients with (3.10), we get
(3.11)

g20 = 2τ0D[−a+ (bA+ cBq23 − Cq3)(1− kq̄∗2e
−2iτ0ω0)

1 + bx∗ + cy2∗
],

g11 = τ0D[−2a+
(1− kq̄∗2)(−C(q3 + q̄3) + 2bA+ 2cBq3q̄3)

1 + bx∗ + cy2∗
],

g02 = 2τ0D[−a+ (bA+ cBq̄23 − Cq̄3)(1− kq̄∗2e
2iτ0ω0)

1 + bx∗ + cy2∗
],

g21 = 2τ0D[−a(W (0)
20 (0) + 2W

(0)
11 (0)) +

1

1 + bx∗ + cy2∗
(−C(W (2)

11 (0) + q3W
(0)
11 (0))

−1

2
C(W

(2)
20 (0) +W

(0)
20 (0)q̄3) + cB(q̄3W

(2)
20 (0) + 2q3W

(2)
11 (0))

+bA(W
(0)
20 (0) + 2W

(0)
11 (0))− q̄∗2(−kCe−iτ0ω0(W

(2)
11 (−1) +W

(0)
11 (−1))

−1

2
kCeiτ0ω0(W

(2)
20 (−1) +W

(0)
20 (−1)q̄3) + kcB(q̄3W

(2)
20 (0)eiτ0ω0

+2q3W
(2)
11 (−1)e−iτ0ω0) + kbA(W

(0)
20 (−1)eiτ0ω0 + 2W

(0)
11 (−1)e−iτ0ω0)))

+
1

(1 + bx∗ + cy2∗)2
((b+ cq3)(−C(q3 + q̄3) + 2bA+ 2cBq3q̄3)(kq̄

∗
2e

−iτ0ω0

−1) + kq̄∗2e
−iτ0ω0(b+ cq3)(bA+ cBq23 − kCq3))].
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Now we compute W20(θ) and W11(θ). From (3.5) and (3.7), we have

Ẇ = U̇t − żq − ˙̄zq̄

=

{
AW − 2Re{q∗(0)F0q(θ)}, θ ∈ [−1, 0)
AW − 2Re{q∗(0)F0q(θ)}+ F0, θ = 0

def
= AW +H(z, z, θ),

where

(3.12) H(z, z, θ) = h20(θ)
z2

2
+ h11(θ)zz + h02(θ)

z2

2
+ · · · .

For θ ∈ [−1, 0), we can get

(3.13) (A− 2iτ0ω0)W20(θ) = −h20(θ) , AW11(θ) = −h11(θ).

From (3.12), we know that for θ ∈ [−1, 0),

H(z, z̄, θ)

= −2Re{q̄∗(0)F0q(θ)}
= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −(g20
z2

2
+ g11zz + g02

z2

2
+ · · · )q(θ)− (ḡ20

z̄2

2
+ ḡ11zz + ḡ02

z2

2
+ · · · )q̄(θ).

Comparing the coefficients with (3.12), we can obtain

h20(θ) = −g20q(θ)− ḡ02q̄(θ), h11(θ) = −g11q(θ)− ḡ11q̄(θ).

On the other hand, by (3.13), we get Ẇ20(θ) = 2iτ0ω0W20(θ)− h20(θ). Solving it,
we have

(3.14) W20(θ) =
ig20
τ0ω0

q(0)eiτ0ω0θ +
iḡ02
3τ0ω0

q̄(0)e−iτ0ω0θ + Ee2iτ0ω0θ.

Similarly, we can get

(3.15) W11(θ) = − ig11
τ0ω0

q(0)eiτ0ω0θ +
iḡ11
τ0ω0

q̄(0)e−iτ0ω0θ + F.

In what follows, we seek appropriate E and F . The definition of A and (3.13) imply
that

(3.16)

∫ 0

−1

dη(θ)W20(θ) = 2iτ0ω0W20(0)− h20(0)

and

(3.17)

∫ 0

−1

dη(θ)W11(θ) = −h11(0).
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By the definition of H(z, z̄, θ) in (3.12), we have

(3.18) h20(0) = −g20q(0)− ḡ02q̄(0) + τ0H1,

(3.19) h11(0) = −g11q(0)− ḡ11q̄(0) + τ0H2,

where

H1 =

(
−2a+

2(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
,−2k(bA+ cBq23 − Cq3)e

−2iτ0ω0)

1 + bx∗ + cy2∗
, 0

)T

,

H2 =

(
−2a− C(q3 + q̄3)− 2bA− 2cBq3q̄3

1 + bx∗ + cy2∗
,
kC(q3 + q̄3)− 2bkA− 2ckBq3q̄3

1 + bx∗ + cy2∗
, 0

)T

.

Substituting (3.14) into (3.18), we obtain

 2iω0 + 2ax∗ +A− r 0 B
−kAe−2iτ0ω0 2iω0 + r1 + d −kBe−2iτ0ω0

0 −d 2iω0 + r2

E = H1

Hence, we have E =
1

△1

(
△1

1,△2
1,△3

1

)T
, where

△1 = (2iω0 + r2)(2iω0 + r1 + d)(2iω0 + 2ax∗ +A− r)

+kdB(r − 2ax∗ − 2iω0)e
−2iτ0ω0 ,

△1
1 = (2iω0 + r2)(2iω0 + r1 + d)(−2a+

2(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
)

+
2kdB(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
(1− e−2iτ0ω0) + 2akdBe−2iτ0ω0 ,

△2
1 = (2iω0 + r2)(2iω0 + 2ax∗ +A− r)(−2k(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
e−2iτ0ω0)

+kA(2iω0 + r2)(−2a+
2(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
)e−2iτ0ω0 ,

△3
1 = kdA(−2a+

2(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
)e−2iτ0ω0 − (2iω0 + 2ax∗ +A− r)

2kd(bA+ cBq23 − Cq3)

1 + bx∗ + cy2∗
e−2iτ0ω0 .
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Similarly, substituting (3.15) into (3.19), we can get F =
1

△2

(
△1

2,△2
2,△3

2

)T
, where

△2 = r2(r1 + d)(r − 2ax∗ −A)− kdB(r − 2ax∗),

△1
2 = 2akdB − r2(r1 + d)(2a+

C(q3 + q̄3)− 2bA− 2cBq3q̄3
1 + bx∗ + cy2∗

),

△2
2 = kr2(2ax∗ − r)

C(q3 + q̄3)− 2bA− 2cBq3q̄3
1 + bx∗ + cy2∗

− 2kaAr2,

△3
2 = −2adkA− kd(r − 2ax∗)

C(q3 + q̄3)− 2bA− 2cBq3q̄3
1 + bx∗ + cy2∗

.

Based on the analysis above, we see that gij in (3.11) is determined by the param-
eters and the time delay in (2.1). Thus, we can compute the following quantities,

C1(0) =
i

2τ0ω0
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

g21
2
,(3.20)

µ2 = −ReC1(0)

Reλ′(τ0)
,

t2 = −ImC1(0) + µ2Imλ
′(τ0)

τ0ω0
,

β2 = 2ReC1(0).

From the expression of C1(0) in (3.20), it is easy to get the values of µ2, β2 and t2.
On the other hand, we know that µ2 determines the direction of the Hopf bifurca-
tion: if µ2 > 0(< 0), then the Hopf bifurcation is supercritical(subcritical) and the
bifurcating periodic solutions exist for τ > τ0(< τ0); β2 determines the stability of
the bifurcating periodic solutions: if β2 < 0(> 0) the bifurcating periodic solutions
are stable(unstable); and t2 determines the period of the bifurcating periodic solu-
tions: the period increase(decrease) if t2 > 0(< 0).

4. Computer simulations

To illustrate the theoretical results, let us give some numerical simulations in
this section. For system (2.1), we choose a = 1/2, a1 = 2, b = 1/2, c = 1/4, d = 1/8,
k = 1, r = 2, r1 = 1/2 and r2 = 1/4. From the formulae in Section 3 and by direct
computation, we obtain

τ0 ≈ 0.7323,
C1(0) ≈ −1.0214 + 0.1165i.

By Reλ′(τ0) > 0 and the above results, we know µ2 > 0. This indicates that it is a
supercritical Hopf bifurcation. Numerical simulations are presented in Figs. 1 and
2.
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Figure 1: Behavior and phase portrait of system (2.1) with τ = 0.1, the
origin is stable.

From Fig. 1, it is clear that the origin is asymptotically stable with τ = 0.1 < τ0.
When τ varies and passes through τ0, the origin losses its stability and a periodic
solution bifurcates from the origin for τ = 0.8 > τ0 (see Fig. 2).
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