
Bull. Korean Math. Soc. 59 (2022), No. 6, pp. 1439–1470

https://doi.org/10.4134/BKMS.b210800

pISSN: 1015-8634 / eISSN: 2234-3016

THE H1-UNIFORM ATTRACTOR FOR

THE 2D NON-AUTONOMOUS TROPICAL CLIMATE MODEL

ON SOME UNBOUNDED DOMAINS

Pigong Han, Keke Lei, Chenggang Liu, and Xuewen Wang

Abstract. In this paper, we study the uniform attractor of the 2D non-
autonomous tropical climate model in an arbitrary unbounded domain on

which the Poincaré inequality holds. We prove that the uniform attractor

is compact not only in the L2-spaces but also in the H1-spaces. Our
proof is based on the concept of asymptotical compactness. Finally, for

the quasiperiodical external force case, the dimension estimates of such a

uniform attractor are also obtained.

1. Introduction

In the present paper, we consider the following two-dimensional (2D) tropical
climate model in an open bounded or unbounded set Ω ⊂ R2:

(1.1)


∂tu+ (u · ∇)u− µ∆u+∇p+∇ · (v ⊗ v) = f1,
∂tv + (u · ∇)v − ν∆v +∇θ + (v · ∇)u = f2,
∂tθ + (u · ∇)θ − η∆θ +∇ · v = f3,
∇ · u = 0,

where u = (u1(x, t), u2(x, t)), v = (v1(x, t), v2(x, t)) are the barotropic mode
and the first baroclinic mode of the velocity, respectively; θ = θ(x, t) and
p = p(x, t) represent the scalar temperature and the scalar pressure. Here
v ⊗ v is the standard tensor notation, i.e., v ⊗ v = (vivj)1≤i,j≤2. µ, ν, η
are nonnegative constants where µ, ν are the viscosities and η is the thermal
diffusivity. In the present paper, we consider µ = ν = η = 1 and the (non-slip)
boundary conditions u|∂Ω = 0, v|∂Ω = 0, θ|∂Ω = 0.

The tropical climate model (µ = ν = η = 0) was originally derived by
Frierson-Majda-Pauluis [14]. The first baroclinic mode v of (1.1) was used
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in some studies of large-scale dynamics of precipitation fronts in the tropical
atmosphere.

The tropical climate model is related to other equations in fluid mechanics.
If we let θ be a constant function, the tropical climate model is similar to
the magnetohydrodynamics (MHD) equations. If v = 0, the tropical climate
model is analogous to the Boussinesq equations. If v = 0, θ = 0, then (1.1)
reduces to the classical incompressible Navier-Stokes equations. This kind of
model is worth being studied and has attracted a lot of attentions recently.
H. O. Bae and B. J. Jin in [4–8] considered the case v = 0, θ = 0 in (1.1),
and obtained many important temporal-spatial decay results in some classical
domains. J. Li and E. Titi [25] established the global well-posedness of strong
solutions with H1 initial data for the Cauchy problem of (1.1) when µ > 0,
ν > 0, η = 0. Under some smallness assumptions, R. Wan [34] proved the
global well-posedness to (1.1) with µ = 0, ν > 0, η = 0. For tropical climate
model with fractional dissipation, α, µ, ν, η > 0, Z. Ye [36] studied the global
regularity to (1.1) and obtained

‖(u, v, θ)‖2Hs(R2) +

∫ t

0

[‖u‖2Hs+α(R2) + ‖v‖2Hs+1(R2) + ‖θ‖2Hs+1(R2)]dτ ≤ C.

If (u0, v0, θ0) ∈ Hs(R2), s > 2, B. Dong, J. Wu, and Z. Ye [12] studied the
global existence and regularity of weak solutions with fractional dissipation.
Recently, H. Li and Y. Xiao [26] obtained for the tropical climate model (1.1)
that

t
s
2 ‖(u, v, θ)‖Hs(R2) = 0 as t→ +∞,

when (u0, v0, θ0) ∈ H2(R2). In [35], letting (u0, v0, θ0) ∈ L1(Rn) ∩ L2(Rn),
H. Xie and Z. Zhang mainly studied the rate of decay to n-dimensional (n ≥ 3)
problem of (1.1) with µ > 0, ν > 0, η > 0.

If the external force does not decay to zero (e.g. the forcing term is a
quasiperiodic function), then the solutions may not decay to zero. However, the
long time behavior of dynamic systems can be described in terms of attractors.

For autonomous fluid dynamic systems, the theory of global attractors of
problems in bounded domains has been widely studied by many scholars (see
[11, 24, 33]). However, some additional conditions need to be added when we
study the global attractors of dynamic systems in unbounded domains because
of the lack of compactness. If the forcing term lies in some weighted Sobolev
spaces, F. Abergel [1] and A. V. Babin [3] obtained an existence result of the
global attractor of the 2D Navier-Stokes equations. If the forcing term does not
belong to any weighted Sobolev spaces but the Poincaré inequality is verified,
R. Rosa [30] and N. Ju [22] showed the existence of the global L2-attractor and
the global H1-attractor of the 2D Navier-Stokes equations, respectively. The
dimension estimates of global attractors were studied in [30].

For non-autonomous dynamic systems, the concept of uniform attractors
was firstly introduced by A. Haraux [18]. The systematic study of uniform
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attractors of the 2D Navier-Stokes equations in bounded domains was given
by V. V. Chepyzhov and M. I. Vishik [10]. V. V. Chepyzhov and M. A.
Efendiev [9] studied the finite dimensionality of the L2-uniform attractor of
a non-autonomous system in an unbounded strip domain. S. Lu, H. Wu,
C. Zhong [28] and D. Gong, H. Song, C. Zhong [17] proved the existence of the
H1-uniform attractor of the 2D Navier-Stokes equations in a bounded domain.
Recently, C. Ai, Z. Tan and J. Zhou [2] derived the existence of a uniform
attractor of the 2D MHD equations in a smooth bounded domain.

Compared to the bounded domain case, the uniform attractor of the 2D
Navier-Stokes equations in an unbounded domain is less well-understood. If the
forcing term vanishes, I. Moise, R. Rosa and X. Wang [29] derived the existence
of the L2-uniform attractor of a noncompact system in an infinite strip domain.
If the forcing term does not lie in any weighted Sobolev spaces but the Poincaré
inequality holds, Y. Hou and K. Li [21] studied the existence of the L2-uniform
attractor of the 2D Navier-Stokes equations in some unbounded domains and
established the estimates of the Hausdorff dimension of the uniform attractor
for the quasiperiodic force case.

This paper is organized as follows. In Section 2, we shall introduce some
function spaces and some operators. In Section 3, we will prove the existence
and uniqueness for weak solutions and further define operators {Uf (t, τ)}. In
Section 4, we will recall the theory of semiprocesses. In Section 5, we shall
study uniformly absorbing sets together with the H1-uniformly asymptotical
compactness, and obtain the H1-uniform attractor of (1.1). The dimension
estimates of the uniform attractor will be given in the last section.

2. Function spaces and weak formulation

Let Ω be an open subset of R2, either bounded or unbounded. The spaces
we shall use in this paper are combinations of those used for the Navier-Stokes
equations and the usual Sobolev spaces. For a Hilbert space X(=L2(Ω) or
H1(Ω)), we do not distinguish the inner products on X and on [X]2 := X×X,
which will be denoted by (·, ·)X .

We always assume that the following Poincaré inequality holds on Ω:

(2.1) ‖ϕ‖L2 ≤ λ−
1
2

1 ‖∇ϕ‖L2 for all ϕ ∈ H1
0 (Ω),

where λ1 > 0 is a positive constant.
Let

V = {ϕ ∈ [C∞c (Ω)]2 | ∇ · ϕ = 0},
H = the closure of V in [L2(Ω)]2,

V = the closure of V in [H1
0 (Ω)]2,

V̂ = {u ∈ [H1
0 (Ω)]2 | ∇ · u = 0}.
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Obviously, for any domain Ω, the inclusion V ⊂ V̂ holds. However, V and V̂
can be different for some domains (see [15,19]). In this paper, we assume that
Ω satisfies

(2.2) V = V̂ .

We equip V,H1
0 (=H1

0 (Ω) or [H1
0 (Ω)]2) with the following inner products

(u1, u2)V =

2∑
i=1

(
∂u1

∂xi
,
∂u2

∂xi

)
L2

for all u1, u2 ∈ V,

(v1, v2)H1
0

=

2∑
i=1

(
∂v1

∂xi
,
∂v2

∂xi

)
L2

for all v1, v2 ∈ H1
0 .

Thanks to (2.1), equipped with such inner products, V,H1
0 (Ω), [H1

0 (Ω)]2 are
Hilbert spaces.

Now we introduce

H = H × [L2(Ω)]2 × L2(Ω),

V = V × [H1
0 (Ω)]2 ×H1

0 (Ω),

and equip H and V with the following inner products, respectively,

(ϕ1, ϕ2)H = (u1, u2)H + (v1, v2)L2 + (θ1, θ2)L2 for all ϕi = (ui, vi, θi) ∈ H,
(ϕ1, ϕ2)V = (u1, u2)V + (v1, v2)H1

0
+ (θ1, θ2)H1

0
for all ϕi = (ui, vi, θi) ∈ V.

H is a Hilbert space with the norm ‖ϕ‖H =
√

(ϕ,ϕ)H, and V is a Hilbert space

with the norm ‖ϕ‖V =
√

(ϕ,ϕ)V. If we identify H with its dual H′, then

V ⊂ H ≡ H′ ⊂ V′,
where each space is dense and can be continuously embedded into the following
one.

We define two linear bounded operators A ∈ L(V, V ′) and A ∈ L(V,V′) by
setting

〈Au1, u2〉V ′,V = (u1, u2)V for all u1, u2 ∈ V,
〈Aϕ1, ϕ2〉V′,V = (ϕ1, ϕ2)V for all ϕ1, ϕ2 ∈ V.

Obviously,

(2.3) ‖Au‖V ′ ≤ ‖u‖V , ‖Aϕ‖V′ ≤ ‖ϕ‖V,
and

(2.4) ‖f‖V′ ≤ λ−
1
2

1 ‖f‖H.
From now on, we denote 〈·, ·〉V′,V by 〈·, ·〉 for simplicity.

The boundary ∂Ω is said to be uniformly of class C3 if we can choose suitable
local cartesian coordinates (y1, y2) in a neighborhood B(η, r) of each point
η ∈ ∂Ω, such that ∂Ω∩B(η, r) can be represented by a function y2 = h(y1; η) of
class C3 whose derivatives up to order 3 are bounded in B(η, r) uniformly with
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respect to η, where B(η, r) is a ball centered at η with radius r (independent
of η).

If ∂Ω is uniformly of class C3, then for all u ∈ V satisfying Au ∈ H, we have
u ∈ [H2(Ω)]2 and

(2.5) ‖∇2u‖L2 ≤ C∂(‖Au‖H + ‖∇u‖L2),

where C∂ depends only on the C3-regularity of ∂Ω. Although the original proof
(in [19, 20, 31]) of (2.5) is only for n = 3, it can be applied to n = 2 either.
Combining (2.5) with similar estimates for elliptic operators (see [13, 16]), we
obtain for all ϕ ∈ V satisfying Aϕ ∈ H that

(2.6) ‖∇2ϕ‖L2 ≤ C∂(‖Aϕ‖H + ‖∇ϕ‖L2).

Thus,

D(A) = {ϕ ∈ V | Aϕ ∈ H} = V ∩ ([H2(Ω)]2 × [H2(Ω)]2 ×H2(Ω)).

In this paper, we always assume that Ω satisfies (2.1), (2.2), (2.6). For example,
Ω is a smooth bounded domain or a straight strip.

For each ϕ ∈ D(A), there holds Aϕ ∈ H and

‖ϕ‖2V = (ϕ,ϕ)V = 〈Aϕ,ϕ〉 = (Aϕ,ϕ)H ≤ ‖Aϕ‖H‖ϕ‖H.

This together with (2.1) gives

(2.7) ‖ϕ‖V ≤ λ
− 1

2
1 ‖Aϕ‖H.

Combining (2.1)-(2.7) yields

(2.8) cΩ(‖ϕ‖L2 + ‖∇ϕ‖L2 + ‖∇2ϕ‖L2) ≤ ‖Aϕ‖H ≤ CΩ‖∇2ϕ‖L2 ,

where cΩ and CΩ depend on (both the regularity and the size of) Ω. Therefore,
D(A) is a closed linear subspace of [H2(Ω)]2 × [H2(Ω)]2 × H2(Ω) with the
equivalent norm ‖ϕ‖D(A) = ‖Aϕ‖H.

Now we define a trilinear form b1 on [H1(Ω)]2 × [H1(Ω)]2 × [H1(Ω)]2 by

b1(v1, v2, v3) =

2∑
j,k=1

∫
Ω

vk1
∂vj2
∂xk

vj3dx, vi = (v1
i , v

2
i ), i = 1, 2, 3,

and a trilinear form b2 on [H1(Ω)]2 ×H1(Ω)×H1(Ω) by

b2(v1, θ2, θ3) =

2∑
i=1

∫
Ω

vi1
∂θ2

∂xi
θ3dx, v1 = (v1

1 , v
2
1).

We can check that

b1(u1, v2, v3) = −b1(u1, v3, v2) for all u1 ∈ V, v2, v3 ∈ [H1(Ω)]2;(2.9)

b1(u, v, v) = 0 for all u ∈ V, v ∈ [H1(Ω)]2.(2.10)

Substituting the Gagliardo-Nirenberg inequality (see [15])

(2.11) ‖ϕ‖L4 ≤ C‖ϕ‖
1
2

L2‖∇ϕ‖
1
2

L2 for all ϕ ∈ H1
0 (Ω),
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into

(2.12) |b1(v1, v2, v3)| ≤ ‖v1‖L4‖∇v2‖L2‖v3‖L4 ,

one derives the following estimate for all v1, v2, v3 ∈ [H1
0 (Ω)]2 (see [23]),

(2.13) |b1(v1, v2, v3)| ≤ C‖v1‖
1
2

L2‖∇v1‖
1
2

L2‖∇v2‖L2‖v3‖
1
2

L2‖∇v3‖
1
2

L2 ,

where C is independent of Ω. Moreover, by (2.8),

(2.14) |b1(v1, v2, v3)| ≤

{
CΩ‖v1‖

1
2

L2‖v1‖
1
2

H2‖v2‖H1‖v3‖L2 ,

CΩ‖v1‖
1
2

L2‖v1‖
1
2

H1‖v2‖
1
2

H1‖v2‖
1
2

H2‖v3‖L2 ,

for all v1, v2 ∈ [H2(Ω)]2, v3 ∈ [L2(Ω)]2, where CΩ depends on (both the reg-
ularity and the size of) Ω. The trilinear form b2 satisfies similar properties to
(2.9)-(2.14), replacing v2, v3 with θ2, θ3.

Now we can define a continuous trilinear form b on V× V× V,

b(ϕ1, ϕ2, ϕ3) = b1(u1, u2, u3)− b1(v1, u3, v2) + b1(u1, v2, v3)(2.15)

+ b1(v1, u2, v3) + b2(u1, θ2, θ3)

for all ϕi = (ui, vi, θi) ∈ V, i = 1, 2, 3. Obviously,

−b1(v1, u3, v2) + b1(v1, u2, v3) = b1(v1, u2, v3)− b1(v1, u3, v2).

Then, similar properties to (2.9) and (2.10) are valid, i.e.,

b(ϕ1, ϕ2, ϕ3) = −b(ϕ1, ϕ3, ϕ2) for all ϕ1, ϕ2, ϕ3 ∈ V,
b(ϕ,ψ, ψ) = 0 for all ϕ,ψ ∈ V.

We note that, for vi = (v1
i , v

2
i ) ∈ [H1

0 (Ω)]2, i = 1, 2, 3,

−b1(v1, v3, v2) = b1(v1, v2, v3) +

2∑
j,k=1

∫
Ω

vj2
∂vk1
∂xk

vj3dx,

and the second term on the right-hand-side shares similar estimates to (2.13)
and (2.14). So for all ϕi ∈ V, i = 1, 2, 3,

(2.16) |b(ϕ1, ϕ2, ϕ3)| ≤ C(‖ϕ1‖L4‖ϕ2‖V‖ϕ3‖L4 + ‖ϕ1‖V‖ϕ2‖L4‖ϕ3‖L4),

and

|b(ϕ1, ϕ2, ϕ3)| ≤ C(‖ϕ1‖
1
2

H‖ϕ1‖
1
2

V‖ϕ2‖V‖ϕ3‖
1
2

H‖ϕ3‖
1
2

V(2.17)

+ ‖ϕ2‖
1
2

H‖ϕ2‖
1
2

V‖ϕ1‖V‖ϕ3‖
1
2

H‖ϕ3‖
1
2

V ).

Moreover, for all ϕ1, ϕ2 ∈ D(A), ϕ3 ∈ H,

|b(ϕ1, ϕ2, ϕ3)| ≤ C∂ [‖ϕ1‖
1
2

H‖ϕ1‖
1
2

V‖ϕ2‖
1
2

V (‖Aϕ2‖
1
2

H + ‖ϕ2‖
1
2

V )‖ϕ3‖H(2.18)

+ ‖ϕ2‖
1
2

H‖ϕ2‖
1
2

V‖ϕ1‖
1
2

V (‖Aϕ1‖
1
2

H + ‖ϕ1‖
1
2

V )‖ϕ3‖H],

and

|b(ϕ1, ϕ2, ϕ3)|+|b(ϕ2, ϕ1, ϕ3)| ≤ CΩ(‖ϕ1‖
1
2

H‖ϕ1‖
1
2

V‖ϕ2‖
1
2

V‖Aϕ2‖
1
2

H‖ϕ3‖H(2.19)
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+ ‖ϕ2‖
1
2

H‖Aϕ2‖
1
2

H‖ϕ1‖V‖ϕ3‖H),

where C∂ depends on the regularity (but not the size) of ∂Ω and CΩ depends
on Ω.

Inequality (2.1) together with (2.17) implies that we can define a continuous
bilinear operator B : V× V→ V′ by setting

〈B(ϕ1, ϕ2), ϕ3〉 = b(ϕ1, ϕ2, ϕ3) for all ϕ1, ϕ2, ϕ3 ∈ V.

Inequality (2.18) also shows

‖B(ϕ1, ϕ2)‖H ≤ C∂ [‖ϕ1‖
1
2

H‖ϕ1‖
1
2

V‖ϕ2‖
1
2

V (‖Aϕ2‖
1
2

H + ‖ϕ2‖
1
2

V )(2.20)

+ ‖ϕ2‖
1
2

H‖ϕ2‖
1
2

V‖ϕ1‖
1
2

V (‖Aϕ1‖
1
2

H + ‖ϕ1‖
1
2

V )]

for all ϕ1, ϕ2 ∈ D(A).
We can also define a continuous linear operator C : V→ H ⊂ V′ by setting

Cϕ = (0,∇θ,∇ · v) for all ϕ = (u, v, θ) ∈ V.

Especially,

〈Cϕ,ψ〉 = (Cϕ,ψ)H.

Direct calculation gives

(2.21) (Cϕ,ψ)H ≤ ‖ϕ‖V‖ψ‖H for all ϕ ∈ V, ψ ∈ H,

and

(2.22) 〈Cϕ,ψ〉 ≤ λ−
1
2

1 ‖ϕ‖V‖ψ‖V for all ϕ,ψ ∈ V.

Moreover,

〈Cϕ,ϕ〉 = (Cϕ,ϕ)H = 0 for all ϕ ∈ V.

Definition. Let f ∈ L2(τ, T ;V′), Φτ ∈ H. Then, Φ ∈ L∞(τ, T ;H)∩L2(τ, T ;V)
is called a weak solution to (1.1) with data Φτ at initial time τ , if

(2.23)
d

dt
(Φ, ψ)H + (Φ, ψ)V + b(Φ,Φ, ψ) + (CΦ, ψ)H = 〈f, ψ〉, τ < t < T,

for all ψ ∈ V, and

(2.24) Φ(t) −→ Φτ in H as t→ τ+.

When f ∈ L2(τ, T ;H) and Φτ ∈ V, if a weak solution Φ satisfies Φ ∈
L∞(τ, T ;V) ∩ L2(τ, T ;D(A)), we call Φ a strong solution.

Remark 2.1. (i) Equation (2.23) is equivalent to

(2.25) ∂tΦ + AΦ + B(Φ,Φ) + CΦ = f in V′;

(ii) If Φ is a strong solution, then we deduce from (2.25) that ∂tΦ ∈ L2(0, T ;H)
and Φ ∈ C([0, T ];V).
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3. Well-posedness

Theorem 3.1 (Uniqueness). Let f ∈ L2(τ, T ;V′), Φτ ∈ H, and Φ,Ψ be two
weak solutions to the problem (2.23) with the same initial data Φτ . Then Φ ≡
Ψ ∈ C([τ, T ];H),

(3.1)
1

2

d

dt
‖Φ(t)‖2H + ‖Φ(t)‖2V = 〈f(t),Φ(t)〉,

and

(3.2) ‖Φ(t)‖2H + 2

∫ t

τ

‖Φ(s)‖2Vds = ‖Φτ‖2H + 2

∫ t

τ

〈f(s),Φ(s)〉ds.

Proof. For all ϕ ∈ V , combining (2.1) and (2.17) gives

b(Φ,Φ, ϕ) ≤ C‖Φ‖
1
2

H‖Φ‖
3
2

V‖ϕ‖V.

Because Φ ∈ L∞(τ, T ;H) ∩ L2(τ, T ;V), we deduce from (2.25) that

(3.3) ‖∂tΦ‖
L

4
3 (τ,T ;V′)

≤ C,

which is not sufficient for us to obtain the uniqueness for weak solutions directly.
Notice that

(3.4) ‖Φ‖L4(τ,T ;L4) ≤ ‖Φ‖
1
2

L∞(τ,T ;H)‖Φ‖
1
2

L2(τ,T ;V) <∞.

Thanks to (2.16) and (2.22), if we set

Φ′1 = −AΦ− CΦ + f, Φ′2 = −B(Φ,Φ),

then

Φ′1 ∈ L2(τ, T ;V′), Φ′2 ∈ L
4
3 (τ, T ;L

4
3 ),

and

∂tΦ = Φ′1 + Φ′2 ∈ L2(τ, T ;V′) + L
4
3 (τ, T ;L

4
3 ).

By standard extension and mollification, we can derive

(3.5)
d

dt
(Φ,Ψ)H = 〈Φ′1,Ψ〉V′,V + 〈Φ′2,Ψ〉L 4

3 ,L4
+ 〈Ψ′1,Φ〉V′,V + 〈Ψ′2,Φ〉L 4

3 ,L4
.

Then (3.1) follows from (3.5).
Noticing that (CΨ,Φ)H = −(CΦ,Ψ)H, we integrate (3.5) on [τ+ε, t] ⊂ (τ, T )

and deduce

(Ψ(t),Φ(t))H − (Ψ(τ + ε),Φ(τ + ε))H + 2

∫ t

τ+ε

(Ψ,Φ)Vds

= −
∫ t

τ+ε

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)]ds+

∫ t

τ+ε

〈f,Φ + Ψ〉ds.

Letting ε→ 0+ and using (2.24), we obtain

(Ψ(t),Φ(t))H − ‖Φτ‖2H + 2

∫ t

τ

(Ψ,Φ)Vds(3.6)
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= −
∫ t

τ

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)]ds+

∫ t

τ

〈f,Φ + Ψ〉ds.

Then, (3.2) follows from (3.6).
Letting Z = Ψ− Φ, then we deduce from (3.2) and (3.6) that

‖Z(t)‖2H = ‖Ψ(t)‖2H + ‖Φ(t)‖2H − 2(Ψ(t),Φ(t))H

= −
∫ t

τ

‖Z(s)‖2V + 2

∫ t

τ

[b(Ψ,Ψ,Φ) + b(Φ,Φ,Ψ)]ds

= −
∫ t

τ

‖Z(s)‖2V + 2

∫ t

τ

b(Z,Z,Φ)ds.

Here we use

b(Ψ,Ψ,Φ) = b(Z,Ψ,Φ) + b(Φ,Ψ,Φ) = b(Z,Z,Φ) + b(Φ,Ψ,Φ),

and
b(Φ,Ψ,Φ) + b(Φ,Φ,Ψ) = b(Φ,Ψ + Φ,Ψ + Φ) = 0.

By (2.11), (2.16) and (3.4), there holds∫ t

τ

b(Z,Z,Φ)ds ≤ C
∫ t

τ

‖Z‖
1
2

H‖Z‖
3
2

V‖Φ‖L4ds

≤ 1

2

∫ t

τ

‖Z‖2Vds+ C

∫ t

τ

‖Z‖2H‖Φ‖4L4ds.

Thus,

(3.7) ‖Z(t)‖2H ≤ C
∫ t

τ

‖Z(s)‖2H‖Φ(s)‖4L4ds.

Finally, by the Gronwall inequality, we deduce ‖Z(t)‖2H ≡ 0, i.e., Ψ = Φ. �

Theorem 3.2 (Existence). For f ∈ L2(τ, T ;V′), Φτ ∈ H, there exists a unique
weak solution Φ to problem (2.23) with the initial data Φτ . Moreover, if f ∈
L2(τ, T ;H), Φτ ∈ V, then Φ is a strong solution.

Proof. We obtain from (3.2) that

‖Φ(t)‖2H +

∫ t

τ

‖Φ(s)‖2Vds ≤ ‖Φτ‖2H +

∫ t

τ

‖f(s)‖2V′ds.(3.8)

This gives

(3.9) sup
t∈[τ,T ]

‖Φ(t)‖2H ≤ ‖Φτ‖2H +

∫ T

τ

‖f‖2V′dt,

and

(3.10)

∫ T

τ

‖Φ(t)‖2Vdt ≤ ‖Φτ‖2H +

∫ T

τ

‖f‖2V′dt.

Thanks to (3.9) and (3.10), we can construct a weak solution to (2.23) by
approximation of solutions on Ωi, i = 1, 2, . . ., where {Ωi}∞i=1 is a sequence of



1448 P. HAN, K. LEI, C. LIU, AND X. WANG

smooth bounded regions satisfying Ω1 ⊂ Ω2 ⊂ · · · ,
⋃∞
i=1 Ωi = Ω. We omit the

details here. Theorem 3.1 says that Φ is the unique weak solution.
Next, taking the H-inner product of (2.25) with respect to AΦ, we obtain

from (2.18) and (2.21) that

1

2

d

dt
‖Φ‖2V + ‖AΦ‖2H = −b(Φ,Φ,AΦ)− (CΦ,AΦ) + 〈f,AΦ〉

≤ 1

2
‖AΦ‖2H + C∂(1 + ‖Φ‖2H‖Φ‖2V)‖Φ‖2V + C‖f‖2H.

Hence,

(3.11)
d

dt
‖Φ‖2V + ‖AΦ‖2H ≤ C∂(1 + ‖Φ‖2H‖Φ‖2V)‖Φ‖2V + C‖f‖2H.

From (3.9) and (3.10), we have∫ T

τ

‖Φ(t)‖2H‖Φ(t)‖2Vdt ≤ C.

We deduce from the Gronwall inequality that

(3.12) sup
t∈[τ,T ]

‖Φ(t)‖2V ≤ C∂ ,

and

(3.13)

∫ T

τ

‖AΦ(t)‖2Hdt ≤ C∂ ,

where C∂ = C∂(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖V). Substituting (2.1), (2.20), (2.21)
into (2.25), we derive from (3.9)–(3.13) that

(3.14)

∫ T

τ

‖∂tΦ(t)‖2Hdt ≤ C∂ ,

where C∂ = C∂(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖V).
Because C∂ in (3.9)–(3.14) depend on the regularity of ∂Ω (but not the

size), we can let {Ωi}∞i=1 be a sequence of bounded regions uniformly of class
C3 (see [19,20] for example). Then Φ is a strong solution because of (3.12) and
(3.13). �

By Theorem 3.2, for f ∈ L2
loc(R+;V′) = L2

loc([0,+∞);V′), we can define
an operator from H into V, denoted by Uf (t, τ) : Φτ 7→ Φ(t), where Φ is the
unique weak solution to (2.23) with the initial data Φτ ∈ H and the external
force f .

Theorem 3.3. If f ∈ L2
loc(R+;H), then Uf (t, τ) : H → V is locally Lipschitz

for t > τ .

Proof. For any t > τ , we take T > t. Let Ψ,Φ be two weak solutions to (2.23)
with Ψτ ,Φτ ∈ H and Z = Ψ− Φ. Then Z ∈ C([τ, T ];H) ∩ L2(τ, T ;V) satisfies

(3.15)

{
d
dtZ + AZ + B(Ψ, Z) + B(Z,Φ) + CZ = 0, τ < t < T,
Z(τ) = Ψτ − Φτ .
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By similar procedures to (3.7), we derive

‖Z(t)‖2H ≤ ‖Z(τ)‖2H + C

∫ t

τ

‖Z(s)‖2H‖Φ(s)‖4L4ds.

Estimates (3.9), (3.10) together with (3.4) show that∫ T

τ

‖Φ(s)‖4L4ds ≤ C.

Using the Gronwall inequality, we deduce that

sup
τ≤t≤T

‖Z(t)‖2H ≤ C‖Z(τ)‖2H = C‖Ψτ − Φτ‖2H,(3.16) ∫ T

τ

‖Z(t)‖2Vdt ≤ C‖Z(τ)‖2H = C‖Ψτ − Φτ‖2H,(3.17)

where C = C(T − τ, ‖f‖L2(τ,T ;V′), ‖Ψτ‖H, ‖Φτ‖H).
Multiplying (3.11) by t− τ , then

d

dt
[(t− τ)‖Φ‖2V] + (t− τ)‖AΦ‖2H

≤ C(1 + ‖Φ‖2H‖Φ‖2V)[(t− τ)‖Φ‖2V] + ‖Φ‖2V + C‖f‖2H.

Using (3.9), (3.10) and the Gronwall inequality, we deduce that

(3.18) sup
t∈[τ,T ]

[(t− τ)‖Φ(t)‖2V] ≤ C,

where C = C(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖H).
Multiplying (3.15)1 by AZ and using (2.19), (2.21), we obtain that

1

2

d

dt
‖Z‖2V + ‖AZ‖2H = −b(Ψ, Z,AZ)− b(Z,Φ,AZ)− (CZ,AZ)H

≤ 1

2
‖AZ‖2H + C(‖Ψ‖2H‖Ψ‖2V + ‖Φ‖2H‖Φ‖2V)‖Z‖2V

+ C(‖Ψ‖4V + ‖Φ‖4V)‖Z‖2H + C‖Z‖2V.
Thus,

d

dt
[(t− τ)‖Z‖2V] + (t− τ)‖AZ‖2H(3.19)

≤ C(‖Ψ‖2H‖Ψ‖2V + ‖Φ‖2H‖Φ‖2V)[(t− τ)‖Z‖2V]

+ C[(t− τ)‖Ψ‖4V + (t− τ)‖Φ‖4V]‖Z‖2H + C‖Z‖2V.

Estimates (3.9), (3.10) show that∫ T

τ

(‖Ψ(t)‖2H‖Ψ(t)‖2V + ‖Φ(t)‖2H‖Φ(t)‖2V)dt ≤ C.

Combining (3.10), (3.16) and (3.18) yields that∫ T

τ

[(t− τ)‖Ψ(t)‖4V + (t− τ)‖Φ(t)‖4V]‖Z(t)‖2Hdt ≤ C‖Ψτ − Φτ‖2H.
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Application of the Gronwall inequality to (3.19) gives

sup
t∈[τ,T ]

[(t− τ)‖Z(t)‖2V] ≤ C‖Ψτ − Φτ‖2H.

Therefore, for any fixed t ∈ (τ, T ],

‖Ψ(t)− Φ(t)‖2V = ‖Z(t)‖2V ≤
C

t− τ
‖Ψτ − Φτ‖2H,

where C = C(T − τ, ‖f‖L2(τ,T ;H), ‖Ψτ‖H, ‖Φτ‖H). �

Remark 3.4. Let f ∈ L2
loc(R+;V′), T (s) : f(·) 7→ f(· + s) be a translation,

s ≥ 0. Then:

(i) If Φτ ∈ H, then Φ(·) = Uf (·, τ)Φτ is a weak solution to (2.23);

(ii)

{
Uf (t, τ) = Uf (t, s)Uf (s, τ) for all t ≥ s ≥ τ ≥ 0,
Uf (τ, τ) = IdH for all τ ≥ 0;

(iii) UT (s)f (t, τ) = Uf (t+ s, τ + s) for all s ≥ 0, t ≥ τ ≥ 0.

Now we study the linearized problem to (2.23). Let f ∈ L2
loc(R+;V′), Φτ ∈

H, Φ(t) = Uf (t, τ)Φτ , define F ′(Φτ ,f)(t, τ) : D(A)→ H,

F ′(Φτ ,f)(t, τ) : w 7→ −Aw − B(w,Φ(t))− B(Φ(t), w)− Cw.

Theorem 3.5. If f ∈ L2
loc(R+;V′), Φτ ∈ H, then there exists a family of linear

operators {L(Φτ ,f)(t, τ) | t ≥ τ ≥ 0} such that

(i) For any Wτ ∈ H, let Φ(t) = Uf (t, τ)Φτ and W (t) = L(Φτ ,f)(t, τ)Wτ ,
then W is the unique weak solution to

(3.20)

{
d
dtW + AW + B(W,Φ) + B(Φ,W ) + CW = 0, t > τ,
W (τ) = Wτ ;

(ii)

{
L(Φτ ,f)(t, τ) = L(Φ(s),f)(t, s)L(Φτ ,f)(s, τ) for all t ≥ s ≥ τ ≥ 0,
L(Φτ ,f)(τ, τ) = IdH for all τ ≥ 0;

(iii) If f ∈ L2
loc(R+;H), then L(Φτ ,f)(t, τ) ∈ L(H,V) for all t > τ .

Proof. The proof is similar to those of Theorems 3.1–3.3. Multiplying (3.20)1

by W yields

1

2

d

dt
‖W‖2H + ‖W‖2V = −b(W,Φ,W ) = b(W,W,Φ)

≤ 1

2
‖W‖2V + C‖Φ‖2H‖Φ‖2V‖W‖2H.

Thus,
d

dt
‖W‖2H + ‖W‖2V ≤ C‖Φ‖2H‖Φ‖2V‖W‖2H.

By (3.9) and (3.10), ∫ T

τ

‖Φ(t)‖2H‖Φ(t)‖2Vdt ≤ C.
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Using the Gronwall inequality, we deduce

(3.21) sup
t∈[τ,T ]

‖W (t)‖2H ≤ C‖Wτ‖2H,

and

(3.22)

∫ T

τ

‖W (t)‖2Vdt ≤ C‖Wτ‖2H,

where C = C(T − τ, ‖f‖L2(τ,T ;V′), ‖Φτ‖H).
Taking the H-inner product of (3.20)1 with respect to AW and using (2.19)–

(2.21), we obtain

1

2

d

dt
‖W‖2V + ‖AW‖2H = −b(W,Φ,AW )− b(Φ,W,AW )− (CW,AW )

≤ 1

2
‖AW‖2H + C(1 + ‖Φ‖2H‖Φ‖2V)‖W‖2V + C‖Φ‖4V‖W‖2H.

Then,

(3.23)
d

dt
‖W‖2V + ‖AW‖2H ≤ C(1 + ‖Φ‖2H‖Φ‖2V)‖W‖2V + C‖Φ‖4V‖W‖2H.

Combining (3.9), (3.10), (3.12), (3.21) gives∫ T

τ

‖Φ(t)‖2H‖Φ(t)‖2Vdt+

∫ T

τ

‖Φ(t)‖4V‖W (t)‖2Hdt ≤ C.

Application of the Gronwall inequality to (3.23) gives

(3.24) sup
t∈[τ,T ]

‖W (t)‖2V +

∫ T

τ

‖AW (t)‖2Hdt ≤ C,

where C = C(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖V, ‖Wτ‖V).
Substituting (3.24) into (2.20), we derive

(3.25)

∫ T

τ

‖B(Φ(t),W (t))‖2Hdt+

∫ T

τ

‖B(W (t),Φ(t))‖2Hdt ≤ C.

Combining (3.20), (3.24), (3.25), we derive

(3.26)

∫ T

τ

‖∂tW (t)‖2Hdt ≤ C,

where C = C(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖V, ‖Ψτ‖V). Estimates (3.24) and (3.26)
allow us to obtain a unique strong solution to (3.20) because (3.20) is a linear
problem. Let L(Φτ ,f)(t, τ) : Wτ 7→ W (t), then L(Φτ ,f)(t, τ) : H → V for all
t > τ .

Multiplying (3.23) by t− τ , we have

d

dt
[(t− τ)‖W‖2V] + (t− τ)‖AW‖2H ≤ C(1 + ‖Φ‖2H‖Φ‖2V)[(t− τ)‖W‖2V](3.27)

+ C(t− τ)‖Φ‖4V‖W‖2H + ‖W‖2V.
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Estimates (3.9), (3.10), (3.18) together with (3.21) give∫ T

τ

‖Φ(t)‖2H‖Φ(t)‖2Vdt ≤ C,

and ∫ T

τ

(t− τ)‖Φ(t)‖4V‖W (t)‖2Hdt ≤ C‖Wτ‖2H.

Using these two inequalities and (3.27), we obtain from the Gronwall inequality
that

sup
τ≤t≤T

[(t− τ)‖W (t)‖2V] ≤ C‖Wτ‖2H.

Therefore, for any fixed t ∈ (τ, T ],

(3.28) ‖W (t)‖2V ≤
C

t− τ
‖Wτ‖2H,

where C = C(T − τ, ‖f‖L2(τ,T ;H), ‖Φτ‖H). Estimate (3.28) tells us that, the
linear operator L(Φτ ,f)(t, τ) ∈ L(H;V) ⊂ L(H). �

Remark 3.6. We shall prove in Section 6 that L(Φτ ,f)(t, τ) is the Fréchet dif-
ferential of Uf (t, τ) at Φτ ∈ H.

4. Semiprocesses

Definition. Let X be a Banach space.

(i) A two-parameter family of operators {U(t, τ)} = {U(t, τ) : X → X | t ≥
τ ≥ 0} is called a semiprocess in X if{

U(t, τ) = U(t, s)U(s, τ) for all t ≥ s ≥ τ ≥ 0,
U(τ, τ) = IdX for all τ ≥ 0;

(ii) For a family of semiprocesses {Uf (t, τ)} depending on f ∈ F , the param-
eter f is called the symbol of the semiprocess {Uf (t, τ)} and F is called
the symbol space.

If F ⊂ L2
loc(R+;V′), then {Uf (t, τ)} defined in Theorem 3.3 is a family of

semiprocesses with the symbol space F .

Definition. Let {Uf (t, τ)}, f ∈ F , be a family of semiprocesses.

(i) A set B is said to be uniformly (with respect to f ∈ F) absorbing for
{Uf (t, τ)}, f ∈ F , if for any τ ≥ 0 and any bounded set K ⊂ X, there
exists t0(τ,K) ≥ τ such that⋃

f∈F

Uf (t, τ)K ⊂ B for all t ≥ t0(τ,K);
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(ii) A set B is said to be uniformly (with respect to f ∈ F) attracting for
{Uf (t, τ)}, f ∈ F , if for any τ ≥ 0 and any bounded set K ⊂ X,

sup
f∈F

dX(Uf (t, τ)K,B) −→ 0 as t→ +∞,

where dX(B1, B2) is the Hausdorff semidistance between two sets B1, B2

⊂ X,

dX(B1, B2) = sup
ϕ∈B1

inf
ψ∈B2

‖ϕ− ψ‖X ;

(iii) A closed uniform (with respect to f ∈ F) attracting set AF is said to be
the uniform (with respect to f ∈ F) attractor of {Uf (t, τ)}, f ∈ F , if it
is contained in any closed uniformly (with respect to f ∈ F) attracting
set A′, i.e., AF ⊂ A′.

The uniform attractor is always constructed from a bounded uniformly ab-
sorbing set. The following asymptotical compactness is useful.

Definition. A family of semiprocesses {Uf (t, τ)}, f ∈ F , is said to be uni-
formly (with respect to f ∈ F) asymptotically compact inX, if {Ufn(tn, τ)ϕn}n
is precompact in X whenever {ϕn}n is bounded in X, {fn}n ⊂ F , and tn →
+∞.

Definition. For a family of semiprocesses {Uf (t, τ)}, f ∈ F , and an arbitrary
bounded set K ⊂ X, the uniform (with respect to f ∈ F) ω-limit set ωτ,F (K)
(with origin τ) is defined by

ωτ,F (K) =
⋂
t≥τ

⋃
f∈F

⋃
s≥t

Uf (s, τ)K,

where the closures are taken in X.
Moreover, ϕ ∈ ωτ,F (K) if and only if there exist {ϕn}n ⊂ K, {fn}n ⊂ F ,

and tn → +∞, such that

Ufn(tn, τ)ϕn −→ ϕ in X as n→ +∞.

The existence of the uniform attractor is given by the following Theorem 4.1
(see [10,21]).

Theorem 4.1. Let {Uf (t, τ)}, f ∈ F , be a family of semiprocesses satisfying:

(i) There exists a semigroup {T (s)} on F such that T (s)F ⊂ F for all
s ≥ 0;

(ii) The following translation identity is valid

UT (s)f (t, τ) = Uf (t+ s, τ + s) for all s ≥ 0, t ≥ τ ≥ 0, f ∈ F ;

(iii) {Uf (t, τ)}, f ∈ F , has a bounded uniformly (with respect to f ∈ F)
absorbing set B;

(iv) {Uf (t, τ)}, f ∈ F , is uniformly (with respect to f ∈ F) asymptotically
compact.
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Then there exists a unique nonempty compact uniform (with respect to f ∈ F)
attractor AF given by

AF = ω0,F (B).

5. Existence of the compact uniform attractor

Now we consider the L2-uniform attractor for system (1.1). Let T (·) be the
translation defined in Remark 3.4 and suppose

(5.1)


F ⊂ {f ∈ L2

b(R+;H) | ‖f‖L2
b
≤ RF},

T (s)F ⊂ F , ∀s > 0,
F is compact in L2

loc(R+;H),

where RF is a nonnegative constant and

‖f‖2L2
b

= sup
t≥0

∫ t+1

t

‖f(s)‖2Hds.

Lemma 5.1. Let F satisfy (5.1), Φτ ∈ H, f ∈ F . Then Φ(t) = Uf (t, τ)Φτ
satisfies

‖Φ(t)‖2H ≤ ‖Φτ‖2He−λ1(t−τ) + λ−1
1 (1 + λ−1

1 )‖f‖2L2
b
,

and
1

t− τ

∫ t

τ

‖Φ(s)‖2Vds ≤
1

t− τ
‖Φτ‖2H + λ−1

1

dt− τe
t− τ

‖f‖2L2
b
,

where d·e is the ceiling function, i.e., dxe is the smallest integer not less than
x.

Proof. Substituting (2.1) and (2.4) into (3.1) gives

d

dt
‖Φ‖2H + λ1‖Φ‖2H ≤ λ−1

1 ‖f‖2H.

By the Gronwall inequality, we deduce

(5.2) ‖Φ(t)‖2H ≤ ‖Φτ‖2He−λ1(t−τ) + λ−1
1

∫ t

τ

e−λ1(t−s)‖f(s)‖2Hds.

Set f(t) = 0 when t < 0. We can estimate the integral on the right-hand side
of (5.2) as ∫ t

τ

e−λ1(t−s)‖f(s)‖2Hds =

∫ t−τ

0

e−λ1s‖f(t− s)‖2Hds

≤
∫ +∞

0

e−λ1s‖f(t− s)‖2Hds

=

∞∑
i=0

∫ i+1

i

e−λ1s‖f(t− s)‖2Hds

≤
∞∑
i=0

e−λ1i

∫ i+1

i

‖f(t− s)‖2Hds
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≤
∞∑
i=0

e−λ1i‖f‖2L2
b

= (1− e−λ1)−1‖f‖2L2
b

≤ (1 + λ−1
1 )‖f‖2L2

b
.

Therefore,

‖Φ(t)‖2H ≤ ‖Φτ‖2He−λ1(t−τ) + λ−1
1 (1 + λ−1

1 )‖f‖2L2
b
.

Substituting (2.4) into (3.8), we derive

‖Φ(t)‖2H +

∫ t

τ

‖Φ(s)‖2Vds ≤ ‖Φτ‖2H + λ−1
1

∫ t

τ

‖f(s)‖2Hds

≤ ‖Φτ‖2H + λ−1
1

∫ τ+dt−τe

τ

‖f(s)‖2Hds

≤ ‖Φτ‖2H + λ−1
1 dt− τe‖f(s)‖2L2

b
.

This ends the proof. �

Lemma 5.2. Suppose F satisfies (5.1). Then

B0 =
{
ϕ ∈ H

∣∣ ‖ϕ‖H ≤ R0 :=

√
2λ−1

1 (1 + λ−1
1 )RF

}
,

is uniformly (with respect to f ∈ F) absorbing in H, and

B1 = {ϕ ∈ V | ‖ϕ‖V ≤ R1 := CRFe
CR4

F },
is uniformly (with respect to f ∈ F) absorbing in V, where C depends on Ω.

Proof. For any r > 0, let Φτ ∈ BH(r) and

t0(τ,BH(r)) = τ + max

{
0,

1

λ1
ln

r2

λ−1
1 (1 + λ−1

1 )R2
F

}
.

Then, for all t ≥ t0, we deduce from Lemma 5.1 that

‖Φ(t)‖2H ≤ 2λ−1
1 (1 + λ−1

1 )R2
F .

Inequality (3.11) gives

d

dt
‖Φ‖2V + ‖AΦ‖2H ≤ C‖Φ‖2H‖Φ‖4V + C‖Φ‖2V + C‖f‖2H.

Lemma 5.1 together with (5.1) shows that∫ t+1

t

‖Φ(s)‖2H‖Φ(s)‖2Vds ≤ CR4
F ,∫ t+1

t

(‖Φ(s)‖2V + ‖f(s)‖2H)ds ≤ CR2
F .

Using the uniform Gronwall inequality, we deduce

‖Φ(t)‖2V ≤ CR2
Fe

CR4
F for all t ≥ t0 + 1. �
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In order to obtain the asymptotical compactness, we need the following weak
continuity of {Uf (t, τ)}.

Lemma 5.3. Let F satisfy (5.1), fn, f ∈ F , ϕn, ϕ ∈ H, and

fn −→ f in L2
loc,weak(R+;H),

ϕn −→ ϕ weakly in H,
as n→ +∞. Then,

Ufn(t, τ)ϕn −→ Uf (t, τ)ϕ weakly in H,
Ufn(·, τ)ϕn −→ Uf (·, τ)ϕ weakly in L2(τ, T ;V),

as n→ +∞ for all T ≥ t ≥ τ .

Proof. Because of Remark 3.4 and (5.1), we only need to prove it for τ = 0.
Let Φn(t) = Ufn(t, 0)ϕn and Φ(t) = Uf (t, 0)ϕ for t ≥ 0. From (3.3), (3.9)

and (3.10), we find that {Φn}n is bounded in L∞(0, T ;H) ∩ L2(0, T ;V), and

{∂tΦn}n is bounded in L
4
3 (0, T ;V′) for all T > 0. Therefore,

Φn′ −→ Φ̃ weakly– ∗ in L∞(0, T ;H),

Φn′ −→ Φ̃ weakly in L2(0, T ;V),

for some Φ̃ ∈ L∞(0, T ;H) ∩ L2(0, T ;V).
Let Ωr = Ω ∩ {x ∈ R2 | |x| < r}. Now consider a smooth truncation

function χ(s) = 1 for s ∈ [0, 1], and χ(s) = 0 for s ∈ [2,∞). For each r > 0,
define χr(x) = χ(|x|/r) and Ψn,r = χrΦn. Then, {Ψn,r}n is bounded in
L∞(0, T ;L2(Ω2r)) ∩ L2(0, T ;H1

0 (Ω2r)) uniformly with respect to r ≥ 1 and n.
Meanwhile, for all 0 ≤ t ≤ t+ a ≤ T ,

‖Φn(t+ a)− Φn(t)‖2H =

∫ t+a

t

〈∂sΦn(s),Φn(t+ a)− Φn(t)〉ds

≤ a 1
4 ‖∂tΦn‖

L
4
3 (0,T ;V′)

‖Φn(t+ a)− Φn(t)‖V

≤ CTa
1
4 ‖Φn(t+ a)− Φn(t)‖V.

Hence,∫ T−a

0

‖Φn(t+ a)−Φn(t)‖2Hdt ≤ CTa
1
4

∫ T−a

0

‖Φn(t+ a)−Φn(t)‖Vdt ≤ CTa
1
4 .

Therefore,

lim
a→0+

sup
n

∫ T−a

0

‖Ψn(t+ a)−Ψn(t)‖2L2(Ω2r)dt = 0.

By Theorem 13.3 in [32], we can take a subsequence {Ψn′}n′ such that

Ψn′ −→ χrΦ̃ strongly in L2(0, T ;L2(Ω2r)).

Thus,

Φn′ −→ Φ̃ strongly in L2(0, T ;L2(Ωr)).
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By a diagonal process,

Φn′ −→ Φ̃ strongly in L2(0, T ;L2(Ωr)) for all r ≥ 1.

Noticing that
fn −→ f weakly in L2(0, T ;H).

Passing the equations for Φn′ to the limit shows that Φ̃ is a weak solution

to (2.23). By Theorem 3.1, we must have Φ̃ = Φ. Then by a contradiction
argument, the whole sequence {Φn}n converges to Φ in the above senses.

For all ψ ∈ V , the locally strong convergence for {Φn}n gives

(Φn(t), ψ)H −→ (Φ(t), ψ)H a.e. in [0, T ].

Moreover, because {∂tΦn}n is bounded in L
4
3 (0, T ;V′), we see that

{(Φn(·), ψ)H}n
is equibounded and equicontinuous on [0, T ]. Therefore,

(Φn(t), ψ) −→ (Φ(t), ψ) in C([0, T ]).

Noticing that V is dense in H, we deduce

Φn(t) −→ Φ(t) weakly in H. �

Now we start to prove the L2-asymptotical compactness. First, define [[·, ·]]:
V× V→ R by

[[Φ,Ψ]] = (Φ,Ψ)V −
λ1

2
(Φ,Ψ)H.

Clearly, [[·, ·]] is bilinear and symmetric. Moreover,

[[Φ]]2 ≡ [[Φ,Φ]] = ‖Φ‖2V −
λ1

2
‖Φ‖2H ≥ ‖Φ‖2V −

1

2
‖Φ‖2V =

1

2
‖Φ‖2V.

Hence,
1

2
‖Φ‖2V ≤ [[Φ]]2 ≤ ‖Φ‖2V.

Thus, [[·, ·]] defines an inner product in V, equivalent to (·, ·)V.

Lemma 5.4. Suppose F satisfies (5.1). Then {Uf (t, τ)}, f ∈ F , is uniformly
(with respect to f ∈ F) asymptotically compact in H.

Proof. For any Φ(t) = Uf (t, τ)Φτ , Φτ ∈ H, we rewrite (3.1) as

d

dt
‖Φ‖2H + λ1‖Φ‖2H + 2[[Φ]]2 = 2〈f,Φ〉.

Thus,

‖Φ‖2H = ‖Φτ‖2He−λ1(t−τ) + 2

∫ t

τ

e−λ1(t−s)(〈f(s),Φ(s)〉 − [[Φ(s)]]2)ds,

i.e.,

‖Uf (t, τ)Φτ‖2H = ‖Φτ‖2He−λ1(t−τ) + 2

∫ t

τ

e−λ1(t−s)〈f(s), Uf (s, τ)Φτ 〉ds(5.3)
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− 2

∫ t

τ

e−λ1(t−s)[[Uf (s, τ)Φτ ]]2ds.

Let K ⊂ H be bounded and consider {ϕn}n ⊂ K, {fn}n ⊂ F , and tn → +∞.
Lemma 5.2 shows that, for all t ≥ t0(τ,K) + 1,

Uf (t, τ)K ⊂ B0 ∩ B1.

Therefore, for tn ≥ t0(τ,K) + 1,

Ufn(tn, τ)ϕn ∈ B0 ∩ B1.

Thus, {Ufn(tn, τ)ϕn}n is weakly precompact in H,

(5.4) Ufn′ (tn′ , τ)ϕn′ −→ ψ weakly in H
for some subsequence n′ and ψ ∈ B0 ∩ B1. Similarly, for each T > 0, assume
tn′ ≥ t0(τ,K) + 1 + T , we also have

Ufn′ (tn′ − T, τ)ϕn′ ∈ B0 ∩ B1.

By a diagonal process, we can assume that

(5.5) ϕT,n′ := Ufn′ (tn′ − T, τ)ϕn′ −→ ψT weakly in H,
with ψT ∈ B0 ∩ B1 for all T > 0. By Remark 3.4, we know

Ufn′ (tn′ , τ) = Ufn′ (tn′ , tn′ − T )Uf ′
n
(tn′ − T, τ)

= UT (tn′−T )fn′ (T, 0)Ufn′ (tn′ − T, τ).

Taking gT,n′ = T (tn′ − T )fn′ ∈ F , we derive

Ufn′ (tn′ , τ)ϕn′ = UgT,n′ (T, 0)Ufn′ (tn′ − T, τ)ϕn′ = UgT,n′ (T, 0)ϕT,n′ .(5.6)

Since {gT,n′}n′ ⊂ F , taking subsequence, we derive

(5.7) gT,n′ −→ gT in L2
loc(R+;H)

for some gT ∈ F . Then using (5.5)–(5.7) and Lemma 5.3, we obtain

Ufn′ (tn′ , τ)ϕn′ = UgT,n′ (T, 0)ϕT,n′ −→ UgT (T, 0)ψT weakly in H.

Comparing this with (5.4), we derive

(5.8) ψ = UgT (T, 0)ψT .

Now,

‖ψ‖H ≤ lim inf
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖H = lim inf
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖H,

and we shall show that

lim sup
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖H ≤ ‖ψ‖H.

Equality (5.3) says that

‖UgT,n′ (T, 0)ϕT,n′‖2H = ‖ϕT,n′‖2He−λ1T(5.9)

+ 2

∫ T

0

e−λ1(T−s)〈gT,n′(s), UgT,n′ (s, 0)ϕT,n′〉ds
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− 2

∫ T

0

e−λ1(T−s)[[UgT,n′ (s, 0)ϕT,n′ ]]2ds.

Because (5.5)–(5.7) and Lemma 5.3 again,

UgT,n′ (·, 0)ϕT,n′ −→ UgT (·, 0)ψT weakly in L2(0, T ;V).

Therefore,

lim
n′→+∞

∫ T

0

e−λ1(T−s)〈gT,n′(s), UgT,n′ (s, 0)ϕT,n′〉ds(5.10)

= lim
n′→+∞

∫ T

0

〈e−λ1(T−s)gT,n′(s), UgT,n′ (s, 0)ϕT,n′〉ds

=

∫ T

0

〈e−λ1(T−s)gT (s), UgT (s, 0)ψT 〉ds

=

∫ T

0

e−λ1(T−s)〈gT (s), UgT (s, 0)ψT 〉ds,

and

lim sup
n′→+∞

(
− 2

∫ T

0

e−λ1(T−s)[[UgT,n′ (s, 0)ϕT,n′ ]]2ds

)
(5.11)

= − 2 lim inf
n′→+∞

∫ T

0

e−λ1(T−s)[[UgT,n′ (s, 0)ϕT,n′ ]]2ds

= − 2 lim inf
n′→+∞

∫ T

0

[[e−
λ1
2 (T−s)UgT,n′ (s, 0)ϕT,n′ ]]2ds

≤ − 2

∫ T

0

[[e−
λ1
2 (T−s)UgT (s, 0)ψT ]]2ds

= − 2

∫ T

0

e−λ1(T−s)[[UgT (s, 0)ψT ]]2ds.

Thus, we substituting (5.10) and (5.11) into (5.9) and derive that

lim sup
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖2H(5.12)

≤ lim sup
n′→+∞

‖ϕT,n′‖2He−λ1T

+ 2

∫ T

0

e−λ1(T−s)〈gT (s), UgT (s, 0)ϕT 〉ds

− 2

∫ T

0

e−λ1(T−s)[[UgT (s, 0)ψT ]]2ds.

On the other hand, because of (5.3) and (5.8),

‖ψ‖2H = ‖ψT ‖2He−λ1T(5.13)
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+ 2

∫ T

0

e−λ1(T−s)〈gT (s), UgT (s, 0)ψT 〉ds

− 2

∫ T

0

e−λ1(T−s)[[UgT (s, 0)ψT ]]2ds.

Substituting (5.13) into (5.12), we derive from ϕT,n′ ∈ B0 ∩ B1 that

lim sup
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖2H = lim sup
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖2H

≤ ‖ψ‖2H + (R2
0 − ‖ψT ‖2H)e−λ1T

≤ ‖ψ‖2H +R2
0e
−λ1T .

Letting T → +∞, then

(5.14) lim sup
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖2H ≤ ‖ψ‖2H.

Combining (5.4) and (5.14), the lemma follows. �

From Theorem 4.1 and Lemmas 5.2, 5.4, we deduce the following theorem.

Theorem 5.5. Suppose F satisfies (5.1). Then {Uf (t, τ)}, f ∈ F , possesses
a unique compact uniform (with respect to f ∈ F) attractor AF in H.

Now we begin to study the uniform attractor in V. We begin with a conti-
nuity property similar to Lemma 5.3.

Lemma 5.6. Let F satisfy (5.1), fn, f ∈ F , ϕn, ϕ ∈ H, and

fn −→ f in L2
loc(R+;H),

ϕn −→ ϕ strongly in H,

as n→ +∞. Then,

Ufn(·, τ)ϕn −→ Uf (·, τ)ϕ strongly in C([τ, T ];H) ∩ L2(τ, T ;V)

for all T ≥ τ . Furthermore, if additionally

ϕn −→ ϕ weakly in V,

then

Ufn(·, τ)ϕn −→ Uf (·, τ)ϕ weakly in L2(τ, T ;D(A))

as n→ +∞.

Proof. The proof of Lemma 5.6 is similar to that of Lemma 5.3. Letting Φn(t) =
Ufn(t, τ)ϕn, Φ(t) = Uf (t, τ)ϕ. It is not difficult to obtain

d

dt
‖Φn − Φ‖2H + ‖Φn − Φ‖2V ≤ C‖Φ‖2V‖Φn − Φ‖2H + C‖fn − f‖2H.

Application of the Gronwall inequality gives the first part of Lemma 5.6. The
second part follows from (3.13). �
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The L2-asymptotical compactness gives the existence of a strong convergent
(in H) sequence which in turn satisfies Lemma 5.6. This indicates that we may
deduce the H1-asymptotical compactness. We define {{·, ·}} : D(A)×D(A)→
R as

{{Φ,Ψ}} := (AΦ,AΨ)− λ1

2
(Φ,Ψ)V.

Then,

{{Φ}}2 = {{Φ,Φ}} ≥ 1

2
‖AΦ‖2H.

Thus, {{·}} is an equivalent norm on D(A).

Lemma 5.7. Suppose F satisfies (5.1). Then {Uf (t, τ)}, f ∈ F , is uniformly
(with respect to f ∈ F) asymptotically compact in V.

Proof. For any Φ(t) = Uf (t, τ)Φτ , Φτ ∈ H, taking the H-inner product of
(2.25) with respect to AΦ, we obtain

d

dt
‖Φ‖2V + λ1‖Φ‖2V = −2b(Φ,Φ,AΦ)− 2(CΦ,AΦ) + 2〈f,AΦ〉 − 2{{Φ}}2.

Therefore,

‖Uf (t, τ)Φτ‖2V = ‖Φτ‖2Ve−λ1(t−τ)(5.15)

− 2

∫ t

τ

e−λ1(t−s)b(Φ(s),Φ(s),AΦ(s))ds

− 2

∫ t

τ

e−λ1(t−s)(CΦ(s),AΦ(s))Hds

+ 2

∫ t

τ

e−λ1(t−s)(f(s),AΦ(s))Hds

− 2

∫ t

τ

e−λ1(t−s){{Φ(s)}}2ds.

For a bounded set K ⊂ H, taking tn ≥ t0(τ,K) + 1, then Ufn(tn, τ)ϕn ∈ B0 ∩
B1. Lemma 5.4 allows us to select a subsequence such that {Ufn′ (tn′ , τ)ϕn′}n′

converges to ψ in H. Moreover, Ufn′ (tn′ , τ)ϕn′ −→ ψ weakly in V either. For
any T > 0, we may assume tn′ ≥ t0 + 1 + T , then

Ufn′ (tn′ − T, τ)ϕn′ ∈ B0 ∩ B1.

By a diagonal process and Lemma 5.4,

ϕT,n′ := Ufn′ (tn′ − T, τ)ϕn′ −→ ψT strongly in H,(5.16)

ϕT,n′ = Ufn′ (tn′ − T, τ)ϕn′ −→ ψT weakly in V,(5.17)

with ψT ∈ B0 ∩ B1 for all T > 0. By Remark 3.4, we know

Ufn′ (tn′ , τ) = Ufn′ (tn′ , tn′ − T )Uf ′
n
(tn′ − T, τ)

= UT (tn′−T )fn′ (T, 0)Ufn′ (tn′ − T, τ).
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Taking gT,n′ = T (tn′ − T )fn′ ∈ F , we derive

Ufn′ (tn′ , τ)ϕn′ = UgT,n′ (T, 0)Ufn′ (tn′ − T, τ)ϕn′ = UgT,n′ (T, 0)ϕT,n′ .(5.18)

Since {gT,n′}n′ ⊂ F , taking subsequence, we derive from (5.1) that

(5.19) gT,n′ −→ gT in L2
loc(R+;H)

for some gT ∈ F . Then, using (5.16)–(5.19) and Lemma 5.6, we obtain

Ufn′ (tn′ , τ)ϕn′ = UgT,n′ (T, 0)ϕT,n′ −→ UgT (T, 0)ψT strongly in H,
Ufn′ (tn′ , τ)ϕn′ = UgT,n′ (T, 0)ϕT,n′ −→ UgT (T, 0)ψT weakly in V.

Thus,

(5.20) ψ = UgT (T, 0)ψT ,

and

‖ψ‖V ≤ lim inf
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖V = lim inf
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖V.

Letting ΦT,n′ = UgT,n′ (·, 0)ϕT,n′ , ΦT = UgT (·, 0)ψT , then (5.15) gives that

‖UgT,n′ (T, 0)ϕT,n′‖2V(5.21)

= ‖ϕT,n′‖2Ve−λ1T

− 2

∫ T

0

e−λ1(T−s)b(ΦT,n′(s),ΦT,n′(s),AΦT,n′(s))ds

− 2

∫ T

0

e−λ1(T−s)(CΦT,n′(s),AΦT,n′(s))Hds

+ 2

∫ T

0

e−λ1(T−s)(gT,n′(s),AΦT,n′(s))Hds

− 2

∫ T

0

e−λ1(T−s){{ΦT,n′(s)}}2ds.

By Lemma 5.6,

ΦT,n′ −→ ΦT strongly in C([0, T ];H),

ΦT,n′ −→ ΦT strongly in L2(0, T ;V),

ΦT,n′ −→ ΦT weakly in L2(0, T ;D(A)).

Combining these two strong convergences with the Sobolev embedding, the
interpolation, and (3.12), (3.13), we derive

ΦT,n′ −→ ΦT strongly in C([0, T ];L4),

∇ΦT,n′ −→ ∇ΦT strongly in L2(0, T ;L4).

Then,

B(ΦT,n′ ,ΦT,n′) −→ B(ΦT ,ΦT ) strongly in L2(0, T ;H).
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Passing (5.21) to the limit, we derive

lim sup
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖2V(5.22)

≤ R2
1e
−λ1T

− 2

∫ T

0

e−λ1(T−s)b(ΦT (s),ΦT (s),AΦT (s))ds

− 2

∫ T

0

e−λ1(T−s)(CΦT (s),AΦT (s))Hds

+ 2

∫ T

0

e−λ1(T−s)(gT (s, 0),AΦT (s))Hds

− 2

∫ T

0

e−λ1(T−s){{ΦT (s)}}2ds.

Meanwhile, from (5.15) and (5.20), we have

‖ψ‖2V = ‖ψT ‖2Ve−λ1T(5.23)

− 2

∫ T

0

e−λ1(T−s)b(ΦT (s),ΦT (s),AΦT (s))ds

− 2

∫ T

0

e−λ1(T−s)(CΦT (s),AΦT (s))Hds

+ 2

∫ T

0

e−λ1(T−s)(gT (s, 0),AΦT (s))Hds

− 2

∫ T

0

e−λ1(T−s){{ΦT (s)}}2ds.

Putting (5.23) into (5.22), we derive

lim sup
n′→+∞

‖Ufn′ (tn′ , τ)ϕn′‖2V = lim sup
n′→+∞

‖UgT,n′ (T, 0)ϕT,n′‖2V

≤ ‖ψ‖2V + (R2
1 − ‖ψT ‖2V)e−λ1T

≤ ‖ψ‖2V +R2
1e
−λ1T .

Letting T → +∞, then we obtain the desired strong convergence. �

Theorem 5.8. Suppose F satisfies (5.1). Then AF obtained in Theorem 5.5
is the unique compact uniform (with respect to f ∈ F) attractor for {Uf (t, τ)},
f ∈ F , in V.

Proof. We only need to prove ω0,F (B1;H) ⊂ ω0,F (B1;V). Let ϕ ∈ ω0,F (B1;H),
then there exist {ϕn}n ⊂ B1, {fn}n ⊂ F , tn → +∞, such that

Ufn(tn, τ)ϕn −→ ϕ in H.
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As {Uf (t, τ)} is V-asymptotically compact, then there exists a subsequence n′,
such that

Ufn′ (tn′ , τ)ϕn′ −→ ϕ∗ in V.
The uniqueness gives that ϕ = ϕ∗ ∈ ω0,F (B1;V). �

6. Dimension estimates

We first prove that {Uf (t, τ)}, f ∈ F is so-called uniformly quasidifferen-
tiable.

Lemma 6.1. Let AF be the uniform attractor obtained in Theorem 5.5. Then
{Uf (t, τ)}, f ∈ F , is uniformly quasidifferentiable in AF ⊂ H. That is,

‖Uf (t, τ)ψ − Uf (t, τ)φ− L(φ,f)(t, τ)(ψ − φ)‖H ≤ γ(t− τ, ‖ψ − φ‖H)‖ψ − φ‖H,
where ψ, φ ∈ AF , limξ→0+ γ(s, ξ) = 0 for all s ≥ 0.

Proof. For φ, ψ ∈ H, set Φ(s) = Uf (t, τ)φ, Ψ(s) = Uf (t, τ)ψ, and Z = Ψ − Φ,
then Z satisfies

(6.1)

{
d
dsZ + AZ + B(Ψ, Z) + CZ = −B(Z,Φ), τ < s < t,
Z(τ) = ψ − φ.

Combining (3.16) and (3.17) gives

sup
τ≤s≤t

‖Z(s)‖2H ≤ C‖ψ − φ‖2H,(6.2) ∫ t

τ

‖Z(s)‖2Vds ≤ C‖ψ − φ‖2H,(6.3)

where C = C(t− τ, ‖f‖L2(τ,t;V′), ‖φ‖H).
We write (3.20) as

(6.4)

{
d
dsW+AW+B(Ψ,W )+CW = −B(W,Φ)+B(Z,W ), τ < s < t,
W (τ) = Wτ ,

and set
R = Ψ− Φ− L(φ,f)(t, τ)(ψ − φ) = Z −W,

with Wτ = ψ − φ and W (s) = L(φ,f)(t, τ)Wτ . Taking the difference of (6.1)
and (6.4), we deduce

(6.5)

{
d
dsR+ AR+ B(Ψ, R) + CR = −B(R,Φ)− B(Z,W ), τ < s < t,
R(τ) = 0.

Multiplying (6.5)1 by R, we deduce from (2.1) and (2.17) that

d

ds
‖R‖2H + ‖R‖2V ≤ C(‖Φ‖2H‖Φ‖2V + ‖W‖2V + ‖Z‖2V)‖R‖2H

+ C(‖Z‖H + ‖W‖H)(‖Z‖2V + ‖W‖2V).

Combining (3.9), (3.10), (3.21), (3.22), (6.2), (6.3) yields∫ t

τ

(‖Φ(s)‖2H‖Φ(s)‖2V + ‖W (s)‖2V + ‖Z(s)‖2V)ds ≤ C,
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and ∫ t

τ

(‖Z(s)‖H + ‖W (s)‖H)(‖Z(s)‖2V + ‖W (s)‖2V)ds ≤ C‖ψ − φ‖3H,

where C = C(t − τ, ‖f‖L2(τ,t;H), ‖φ‖H, ‖ψ‖H). Using the Gronwall inequality,
we obtain

sup
τ≤s≤t

‖R(s)‖2H ≤ C‖ψ − φ‖3H.

This tells us that

(6.6)
‖Ψ(s)− Φ(s)− L(φ,f)(t, τ)(ψ − φ)‖2H

‖ψ − φ‖2H
=
‖R(s)‖2H
‖ψ − φ‖2H

≤ C‖ψ − φ‖H,

where C = C(t − τ, ‖f‖L2(τ,t;H), ‖φ‖H, ‖ψ‖H). Inequality (6.6) shows that
L(φ,f)(t, τ) is the Fréchet differential of Uf (t, τ) at φ ∈ H. Moreover, if
φ, ψ ∈ AF , then ‖φ‖H, ‖ψ‖H are bounded according to Lemma 5.2. Thus
the constant C in (6.6) is independent of φ and {Uf (t, τ)} is uniformly quasid-
ifferentiable. �

Let T = 1, then (3.21) says that

sup
t∈[0,1]

sup
f∈F

sup
ϕ∈AF

‖L(ϕ,f)(t, btc)‖L(H) ≤ C,

where C = C(RF ). We set

f0(t) = g(α1t, α2t, . . . , αkt),

where g(ω1, . . . , ωk) is a 2π-periodic function in each argument ωi, i = 1, . . . , k;
α1, . . . , αk are rationally independent numbers; g is a Lipschitz continuous
function on Tk with values in H, i.e.,

‖g(ω)− g(ω′)‖H ≤ L|ω − ω′|Tk for all ω, ω′ ∈ Tk,

for some positive constants L > 0. We take

F = {fω | fω(t) = g(ω + αt), ω ∈ Tk},

where α = (α1, . . . , αk). Then (5.1) is satisfied, andAF is obtained by Theorem
5.5.

We define

q̃j = lim sup
t→+∞

sup
fω∈F
ϕ∈AF

sup
ψi∈H
‖ψi‖H≤1
i=1,...,j

1

t

∫ t

0

Tr{F ′(ϕ,fω)(s, 0) ◦Qj(s)}ds,

where Qj(s) = Qj(s, ϕ;ψ1, . . . , ψj) is the projection from H onto the space
spanned by L(ϕ,fω)(s, 0)ψ1, . . . , L(ϕ,fω)(s, 0)ψj . The number Tr{F ′(ϕ,fω)(s, 0) ◦
Qj(s)} is the trace of the linear operator (of finite rank) F ′(ϕ,fω)(s, 0) ◦ Qj(s)
(F ′ is defined in Theorem 3.5). The Hausdorff and the fractal dimension of AF
relies on the negativeness of q̃j . The following theorem is from [10].
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Theorem 6.2. Under the above assumptions in this section, if

q̃j ≤ qj , j = 1, 2, . . . ,

for some concave function qj with respect to j, and

qm ≥ 0 > qm+1

for some integer m, then the Hausdorff dimension and the fractal dimension
can be estimated by

dimH(AF ) ≤ dimF (AF ) ≤ m+
qm

qm − qm+1
+ k.

Moreover, if m = 0, then dimH(AF ) = dimF (AF ) = 0.

The following lemma is important when we study dynamic systems on un-
bounded domains (see [10,27,30]).

Lemma 6.3 (Lieb-Thirring Inequality). Let e1, . . . , ej ∈ [H1(R2)]m be an or-
thonormal family of vectors in [L2(R2)]m. Then∥∥∥∥ j∑

i=1

|ei|2
∥∥∥∥2

L2

≤ C
j∑
i=1

‖∇ei‖2L2 ,

where C depends on m only.

Application of Theorem 6.2 gives:

Theorem 6.4. Under the assumptions of Theorem 6.2, the uniform attractor
AF obtained in Theorem 5.5 satisfies

dimH(AF ) ≤ dimF (AF ) ≤ C0λ
−3
1 (1 + λ−1

1 )R4
F + k,

where R2
F = supω∈Tk

∫ 1

0
‖fω(s)‖2Hds, C0 is an absolute constant independent of

Ω or k.
Moreover, if C0λ

−3
1 (1 + λ−1

1 )R4
F < 1, then dimH(AF ) = dimF (AF ) = k.

Proof. Let Φ(t) = Ufω (t, 0)ϕ, then

Tr{F ′(ϕ,fω)(s, 0) ◦Qj(s)} =

j∑
i=1

〈F ′(ϕ,fω)(s, 0)ei(s), ei(s)〉

= −
j∑
i=1

[‖ei(s)‖2V + b(ei(s),Φ(s), ei(s))]

= −
j∑
i=1

[‖ei(s)‖2V − b(ei(s), ei(s),Φ(s))].

For the last term, using (2.15), Hölder inequality, Young’s inequality and
Lemma 6.3, we deduce∣∣∣∣ j∑

i=1

b(ei(s), ei(s),Φ(s))

∣∣∣∣ ≤ C j∑
i=1

∫
Ω

|Φ(s)||ei(s)||∇ei(s)|dx
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= C

∫
Ω

|Φ(s)|
j∑
i=1

|ei(s)||∇ei(s)|dx

≤ C
∫

Ω

|Φ(s)|
( j∑
i=1

|ei(s)|2
) 1

2
( j∑
i=1

|∇ei(s)|2
) 1

2

dx

≤ C‖Φ(s)‖L4

∥∥∥∥ j∑
i=1

|ei(s)|2
∥∥∥∥ 1

2

L2

∥∥∥∥ j∑
i=1

|∇ei(s)|2
∥∥∥∥ 1

2

L1

≤ C‖Φ(s)‖
1
2

L2‖∇Φ(s)‖
1
2

L2

( j∑
i=1

‖ei(s)‖2V
) 3

4

≤ 1

2

j∑
i=1

‖ei(s)‖2V + C‖Φ(s)‖2H‖Φ(s)‖2V.

Here we use∥∥∥∥ j∑
i=1

|∇ei(s)|2
∥∥∥∥ 1

2

L1

=

(∫
Ω

j∑
i=1

|∇ei(s)|2dx
) 1

2

=

( j∑
i=1

∫
Ω

|∇ei(s)|2dx
) 1

2

.

Hence,

Tr{F ′(ϕ,fω)(s, 0) ◦Qj(s)} ≤ −
1

2

j∑
i=1

‖ei(s)‖2V + C‖Φ(s)‖2H‖Φ(s)‖2V

≤ −λ1

2

j∑
i=1

‖ei(s)‖2H + C‖Φ(s)‖2H‖Φ(s)‖2V

≤ −λ1

2
j + C‖Φ(s)‖2H‖Φ(s)‖2V.

Thus by Lemma 5.1 and Lemma 5.2, we obtain

q̃j ≤ −
λ1

2
j + C lim sup

t→+∞

1

t

∫ t

0

‖Φ(s)‖2H‖Φ(s)‖2Vds

≤ −λ1

2
j + Cλ−1

1 (1 + λ−1
1 )R2

F lim sup
t→+∞

1

t

∫ t

0

‖Φ(s)‖2Vds

≤ −λ1

2
j + Cλ−2

1 (1 + λ−1
1 )R4

F

= −λ1

2
[j − C0λ

−3
1 (1 + λ−1

1 )R4
F ] , qj .

Take
m = bC0λ

−3
1 (1 + λ−1

1 )R4
Fc,

where bxc is the smallest integer not greater than x. Then qm ≥ 0 > qm+1.
Finally, by Theorem 6.2, we deduce

dimH(AF ) ≤ dimF (AF ) ≤ C0λ
−3
1 (1 + λ−1

1 )R4
F + k. �
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