Browse > Article
http://dx.doi.org/10.4134/BKMS.b210800

THE H1-UNIFORM ATTRACTOR FOR THE 2D NON-AUTONOMOUS TROPICAL CLIMATE MODEL ON SOME UNBOUNDED DOMAINS  

Pigong, Han (Academy of Mathematics and Systems Science Chinese Academy of Sciences)
Keke, Lei (Academy of Mathematics and Systems Science Chinese Academy of Sciences)
Chenggang, Liu (School of Statistics and Mathematics Zhongnan University of Economics and Law)
Xuewen, Wang (Academy of Mathematics and Systems Science Chinese Academy of Sciences)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.6, 2022 , pp. 1439-1470 More about this Journal
Abstract
In this paper, we study the uniform attractor of the 2D nonautonomous tropical climate model in an arbitrary unbounded domain on which the Poincaré inequality holds. We prove that the uniform attractor is compact not only in the L2-spaces but also in the H1-spaces. Our proof is based on the concept of asymptotical compactness. Finally, for the quasiperiodical external force case, the dimension estimates of such a uniform attractor are also obtained.
Keywords
Tropical climate model; asymptotical compactness; uniform attractor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain, RAIRO Model. Math. Anal. Numer. 23 (1989), no. 3, 359-370. https://doi.org/10.1051/m2an/1989230303591   DOI
2 C. Ai, Z. Tan, and J. Zhou, Global well-posedness and existence of uniform attractor for magnetohydrodynamic equations, Math. Methods Appl. Sci. 43 (2020), no. 12, 7045-7069. https://doi.org/10.1002/mma.6414   DOI
3 A. V. Babin, The attractor of a Navier-Stokes system in an unbounded channel-like domain, J. Dynam. Differential Equations 4 (1992), no. 4, 555-584. https://doi.org/10.1007/BF01048260   DOI
4 H.-O. Bae and B. J. Jin, Temporal and spatial decays for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 3, 461-477. https://doi.org/10.1017/S0308210500003966   DOI
5 H.-O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations 209 (2005), no. 2, 365-391. https://doi.org/10.1016/j.jde.2004.09.011   DOI
6 H.-O. Bae and B. J. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal. 240 (2006), no. 2, 508-529. https://doi.org/10.1016/j.jfa.2006.04.029   DOI
7 H.-O. Bae and B. J. Jin, Temporal and spatial decay rates of Navier-Stokes solutions in exterior domains, Bull. Korean Math. Soc. 44 (2007), no. 3, 547-567. https://doi.org/10.4134/BKMS.2007.44.3.547   DOI
8 H.-O. Bae and B. J. Jin, Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data, J. Korean Math. Soc. 49 (2012), no. 1, 113-138. https://doi.org/10.4134/JKMS.2012.49.1.113   DOI
9 V. V. Chepyzhov and M. A. Efendiev, Hausdorff dimension estimation for attractors of nonautonomous dynamical systems in unbounded domains: an example, Comm. Pure Appl. Math. 53 (2000), no. 5, 647-665.   DOI
10 V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002. http://dx.doi.org/10.1090/coll/049   DOI
11 P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math. 38 (1985), no. 1, 1-27. https://doi.org/10.1002/cpa.3160380102   DOI
12 B.-Q. Dong, J. Wu, and Z. Ye, Global regularity for a 2D tropical climate model with fractional dissipation, J. Nonlinear Sci. 29 (2019), no. 2, 511-550. https://doi.org/10.1007/s00332-018-9495-5   DOI
13 L. C. Evans, Partial differential equations, second edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. https://doi.org/10.1090/gsm/019   DOI
14 D. M. W. Frierson, A. J. Majda, and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit, Commun. Math. Sci. 2 (2004), no. 4, 591-626. http://projecteuclid.org/euclid.cms/1109885499   DOI
15 G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, second edition, Springer Monographs in Mathematics, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-09620-9   DOI
16 J. G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math. 136 (1976), no. 1-2, 61-102. https://doi.org/10.1007/BF02392043   DOI
17 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
18 D. Gong, H. Song, and C. Zhong, Attractors for nonautonomous two-dimensional space periodic Navier-Stokes equations, J. Math. Phys. 50 (2009), no. 10, 102706, 10 pp. https://doi.org/10.1063/1.3227652   DOI
19 A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Comm. Partial Differential Equations 13 (1988), no. 11, 1383-1414. https://doi.org/10.1080/03605308808820580   DOI
20 J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639-681. https://doi.org/10.1512/iumj.1980.29.29048   DOI
21 Y. Hou and K. Li, The uniform attractor for the 2D non-autonomous Navier-Stokes flow in some unbounded domain, Nonlinear Anal. 58 (2004), no. 5-6, 609-630. https://doi.org/10.1016/j.na.2004.02.031   DOI
22 N. Ju, The H1-compact global attractor for the solutions to the Navier-Stokes equations in two-dimensional unbounded domains, Nonlinearity 13 (2000), no. 4, 1227-1238. https://doi.org/10.1088/0951-7715/13/4/313   DOI
23 O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, second English edition, revised and enlarged., translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, Vol. 2, Gordon and Breach Science Publishers, New York, 1969.
24 O. A. Ladyzhenskaya, A dynamical system that is generated by the Navier-Stokes equations, Dokl. Akad. Nauk SSSR 205 (1972), 318-320.
25 S. Lu, H. Wu, and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst. 13 (2005), no. 3, 701-719. https://doi.org/10.3934/dcds.2005.13.701   DOI
26 J. Li and E. Titi, Global well-posedness of strong solutions to a tropical climate model, Discrete Contin. Dyn. Syst. 36 (2016), no. 8, 4495-4516. https://doi.org/10.3934/dcds.2016.36.4495   DOI
27 H. Li and Y. Xiao, Decay rate of unique global solution for a class of 2D tropical climate model, Math. Methods Appl. Sci. 42 (2019), no. 8, 2533-2543. https://doi.org/10.1002/mma.5529   DOI
28 E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of Schrodinger equations and their relations to Sobolev inequalities, Studies in Mathematical Physics, Essays in Honour of Valentine Bargmann, 269-303, Princeton Univ. Press, Princeton, NJ. 1976.
29 I. Moise, R. Rosa, and X. Wang, Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst. 10 (2004), no. 1-2, 473-496. https://doi.org/10.3934/dcds.2004.10.473   DOI
30 R. Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal. 32 (1998), no. 1, 71-85. https://doi.org/10.1016/S0362-546X(97)00453-7   DOI
31 V. A. Solonnikov and V. E. Scadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973), 196-210, 235.
32 R. Temam, Navier-Stokes equations and nonlinear functional analysis, second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. https://doi.org/10. 1137/1.9781611970050   DOI
33 Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl. 446 (2017), no. 1, 307-321. https://doi.org/10.1016/j.jmaa.2016.08.053   DOI
34 R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3   DOI
35 R. Wan, Global small solutions to a tropical climate model without thermal diffusion, J. Math. Phys. 57 (2016), no. 2, 021507, 13 pp. https://doi.org/10.1063/1.4941039   DOI
36 H. Xie and Z. Zhang, Time decay rate of solutions to the tropical climate model equations in Rn, Appl. Anal. 100 (2021), no. 7, 1487-1500. https://doi.org/10.1080/00036811.2019.1646422   DOI