• Title/Summary/Keyword: Mathematical problem

Search Result 3,797, Processing Time 0.027 seconds

Genetic Algorithm of the Planar Storage Location Assignment Problem (평면적 저장 위치 할당 문제에 대한 유전자 알고리즘)

  • Park, Chang-Kyu;Seo, Jun-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.129-140
    • /
    • 2009
  • This paper introduces the planar storage location assignment problem (PSLAP) that no research has attempted to mathematically solve. The PSLAP can be defined as the assignment of the inbound and outbound objects to the storage yard with aim of minimizing the number of obstructive object moves. The storage yard allows only planar moves of objects. The PSLAP usually occurs in the assembly block stockyard operations at a shipyard. This paper formulates the PSLAP using a mathematical programming model, but which belongs to the NP-hard problems category. Thus this paper utilizes an efficient genetic algorithm (GA) to solve the PSLAP for real-sized instances. The performance of the proposed mathematical programming model and developed GA is verified by a number of numerical experiments.

A Study on a Mathematical Model of the Long-term Track Tamping Scheduling Problem (도상 다짐작업의 장기 일정계획 문제에 관한 수리적 모형 고찰)

  • Oh Seog-Moon;Lee Jeeha;Lee Hee-Up;Park Bum Hwan;Hong Soon-Heum
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.50-56
    • /
    • 2006
  • This paper presents a mathematical model of the long-term track tamping scheduling problem in the Korean highspeed railway system. The presented model encompasses various operational field constraints, moreover improves a state-of-the-art model in extending the feasible space. We show the model is sized up to intractable scale, then propose another approximation model that is possible to handle with the present computer system and commercial optimization package, directly. The aggregated index, lot, is selected, considering the resolution of the planning horizon as well as scheduling purpose. Lastly, this paper presents two test results for the approximation model. The results expose the approximation model to quite promising in deploying it into an operational software program for the long-term track tamping scheduling problem.

INFINITELY MANY SMALL SOLUTIONS FOR THE p&q-LAPLACIAN PROBLEM WITH CRITICAL SOBOLEV AND HARDY EXPONENTS

  • Liang, Sihua;Zhang, Jihui;Fan, Fan
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1143-1156
    • /
    • 2010
  • In this paper, we study the following p&q-Laplacian problem with critical Sobolev and Hardy exponents {$-{\Delta}_pu-{\Delta}_qu={\mu}\frac{{\mid}u{\mid}^{p^*(s)-2}u}{{\mid}x{\mid}^s}+{\lambda}f(x,\;u)$, in $\Omega$, u=0, on $\Omega$, where ${\Omega}\;{\subset}\;\mathbb{R}^{\mathbb{N}}$ is a bounded domain and ${\Delta}_ru=div({\mid}{\nabla}u{\mid}^{r-2}{\nabla}u)$ is the r-Laplacian of u. By using the variational method and concentration-compactness principle, we obtain the existence of infinitely many small solutions for above problem which are the complement of previously known results.

On the Assembly Block Storage Location Assignment Problem (조립블록 저장위치 할당문제에 대한 재고찰)

  • Park, Chang-Kyu;Seo, Jun-Yong
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.116-125
    • /
    • 2009
  • We revisit the assembly block storage location assignment problem (ABSLAP) at a shipyard, in order to compensate for the deficiency in performance verification of the heuristic ABSLAP algorithm developed by the previous study. In this paper, we formulate a mathematical programming model of the ABSLAP, refine elaborately the heuristic ABSLAP algorithm, and show the performance of the developed mathematical programming model and the revised heuristic ABSLAP algorithm. In addition, we explain simulation experiments conducted using the revised heuristic ABSLAP algorithm to investigate the influences of block stockyard layouts and production schedule instability on the block stockyard operations.

A Study on Solving Word Problems Related with Consistency Using the Lever Model (지렛대 모델을 이용한 농도 문제의 해결에 대한 연구)

  • Kim, Jae-Kyoung;Lee, Seong-Hyun;Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.159-175
    • /
    • 2010
  • In this paper we make a new problem solving model using the principle of the lever. Using the model we solved many word problems related with consistency. We suggest new problem solving method using the lever model and describe some characteristics of the method.

OPTIMAL PROBLEM OF REGULAR COST FUNCTION FOR RETARDED SYSTEM

  • Jong-Yeoul Park;Jin-Mun Jeong;Young-Chel Kwun
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.115-126
    • /
    • 1998
  • We study the optimal control problem of system governed by retarded functional differential $$ x'(t) = A_0 x(t) + A_1 x(t - h) + \\ulcorner\ulcorner\ulcorner_{-h}^{0} a(s)A_2 x(t + s)ds + B_0 u(t) $$ in Hilbert space H. After the fundamental facts of retarded system and the description of condition so called a weak backward uniqueness property are established, the technically important maximal principle and the bang-bang principle are given. its corresponding linear system.

  • PDF

Multivariable Recursively Generated Weighted Shifts and the 2-variable Subnormal Completion Problem

  • Idrissi, Kaissar;Zerouali, El Hassan
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.711-732
    • /
    • 2018
  • In this paper, we give a new approach to solving the 2-variable subnormal completion problem (SCP for short). To this aim, we extend the notion of recursively generated weighted shifts, introduced by R. Curto and L. Fialkow, to 2-variable case. We next provide "concrete" necessary and sufficient conditions for the existence of solutions to the 2-variable SCP with minimal Berger measure. Furthermore, a short alternative proof to the propagation phenomena, for the subnormal weighted shifts in 2-variable, is given.

A Case study on the Validity Review of the Problem Solving Process of Elemetary $5^{th}$ graders (초등학교 5학년 학생들의 문제해결 과정의 타당성 검토 활동에 관한 사례연구)

  • Park, Ji-Yeon;Park, Young-Hee
    • The Mathematical Education
    • /
    • v.51 no.3
    • /
    • pp.265-280
    • /
    • 2012
  • This study aims to provide implications from mathematics education perspective by designing a process of 'validity review on the problem solving process', and then, by analyzing the results. In the result of analysis on the features of children's thinking in accordance with 4 stages of problem solving, children's thinking was equally observed in every stage rather than intensively observed in one stage, and reflective thinking related to important elements from each stage of problem solving process was observed. In the result of analysis of changes in description for problem solving process, there was a difference in the aspects of changes by children's knowledge level in mathematics, however, the activity of validity review on problem solving process in overall induced positive changes in children's description, especially the changes in problem solving process of children. Through the result of this study, we could see that the validity review on problem solving process promotes children's reflective thinking and enables meta-cognition thus has a positive influence on children's description of problem solving process.