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OPTIMAL PROBLEM OF REGULAR COST
FUNCTION FOR RETARDED SYSTEM

JONG-YEOUL PARK, JIN-MUN JEONG AND YOUNG-CHEL KWUN

ABSTRACT. We study the optimal control problein of system gov-
erned by retarded functional differential

, 0
x (t) = Agz(t) + A1z(t — h) - / N a(s)Azz(t + s)ds + Boul(t)

in Hilbert space H. After the fundamental facts of retarded system
and the description of condition so called a weak backward unique-
ness property are established, the technically important maximal
principle and the bang-bang principle are given. i:s corresponding
linear system.

1. Introduction

In this paper we deal with the control problem for retarded func-
tional differential equation:

(1.1)
d

0
(—1—21’(1‘/) =Agz(t) + A1z(t - h) + [h a(s)Agx(t + s)ds

+B[)u(t),
(1.2) 2(0) =¢°, z(s) =g'(s), s€[-h0)

in Hilbert space H. We investigate the optimization of control func-
tions appearing as the cost function with particular objective.
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We solve the optimization problem by introducing the structural
operator F' and the transposed dual system in the sense of S. Nakagiri
7.

In section 2, we consider some the regurality and a formular rep-
resentation for functional differential equations in Hilbert spaces. We
establish a form of the mild solution which is described by the integral
equation in terms of fundamental solution using structural operator.
In section 3, we shall give a cost function, which is called the feedback
control law for regulator problem and consider results on the existence
and uniqueness of optimal control on some admissible set. After consid-
ering the relation between the operator A; and the structural operator
F', we will give the condition so called a weak backward uniqueness
property. Maximal principle and bang-bang principle for the given
technologically important cost function are also derived.

2. Functional differential equation with time delay

Let H be a Hilbert spaces and V be a dense cubspace in H. The
norm on V(resp. H) will be denoted by || - || ( resp. |-|) and the
corresponding scalar products will be denoted by ((-,-))(resp. (-,-)).
Assume that the injection of V into H is continuous. The antidual
of V is denoted by V*, and the norm of V* by || - ||*. Identifying H
with its antidual we may consider that H is emboedded in V*. Hence
we have V C H C V* densely and continuously. If the operator Ag
is a bounded linear operator from V to V* and generates an analytic
semigroup, then it is easily seen that

T
(2.1) H={zeV™: / [ ApetAoz||?dt < oo},
0

for the time T > 0 where || - ||, is the norm of the element of V*. The
realization of Ay in H which is the restriction of Ap to

D(Ag) ={ue V:Awue H}

is also denoted by Ag. Therefore, in terms of the interpolation theory
we can see that

(2.2) VA%

2= H

(&
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and hence we can also replace the interpolation space F in the paper
G. Blasio, K. Kunisch and A. Sinestrari [2] with the space H. Hence,
from now on we derive the same results of [2]. Let a(u, v) be a bounded
sesquilinear form defined in V' x V satisfying Garding’s inequality

Re a(u,v) > col|ull? - cilel®, e >0, ¢ >0.
Let Ay be the operator associated with a sesquil near form
(Apu,v) = —alu,v), wu, veV.

Then Ap generates an analytic semigroup in both H and V* and so
the equation (1.1) and (2.2) may be considered as an equation in both
H and V*.

Let the operators A; and A5 be a bounded linear operators from V to
V*. The function a(-) is assume to be a real valued Holder continuous
in [—h,0] and the controller operator By is a bounded linear operator
from some Hilbert space U to H. Under these conditions, from (2.2)
and Theorem 3.3 of [2] we can obtain following result.

Let Z denote the product reflexive space H x .2(—h,0; V) with the
norm

0 € 1
lgllz = (g + / 19 (IPds)E, g = (o g") € 2.

J—h

The adjoint space Z* of Z is identified with the product space H x
L?(0,T; V™) via duality pairing

0

@bz =00+ [ (@) ez fer

—h

where (-, ) denotes the duality pairing.

PROPOSITION 2.1. Let g = (g",¢') € Z and v € L?(0,T;U). Then
for each T' > 0, a solution z of the equation (1.1) and (1.2) belongs to

LXH0, T V) nWh2(0. T3 V™) € C([0.TT; H).
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where W12(0,T; V*) denotes the Sobolev space of V*-valued measur-
able functions on (0, T) such that itself and its distributional derivative
belong to L*(0,T;V*).

Let z(t;g,u) be the solution of (1.1) and (1.2) with initial value
g= (g% ¢") € Z and control v € L?(0,T;U). According to S. Nakagiri
[7], we define the fundamental solution W {(t) for (L.1) and (1.2) by

W(t)qo _ {$(t; (90,0),0), t>0

0 t<0
for g° € H. Here, we note that
2(t: (¢, 0), /Gt-sAl (s — R)
/ a(T)AsW (T + s)drids, t>0
—h

where G(t) is an analytic semigroup generated by Ap. Since we as-
sume that a(-) is Holder continuous, the fundamental solution ex-
ists as seen in [11]. It is also known that W (¢) is strongly contin-
uous and AgW(t) and dW(t)/dt are strongly continuous except at
t=nh, n=20, 1, 2,

For each ¢ > 0, we introduce the structural operator F(-) from
H x L?(0,T;V) to H x L*(0,T; V*) defined by

Fg=(g° Fig"),

qu —Alq / a(t Agg (r—s)dr
h

for g = (¢°, ¢') € Z. The solution r(t) = x(¢; g,u) of (1.1) and (1.2) is
represented by

0 ¢
o(t) = W(t)g® + [} Ui(s)g'(s)ds +/(; W(t - s)Bou(s)ds

where
5

Ul(s)=W({t—s—h)A + W(t— s+ 1)a(T)Azdr

—h
for t > 0.
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ProposITION 2.2. If A} : V — V* is an isomorphism, then F :
Z — Z* is an isomorphism.

Proof. For f € Z* the element g € Z satisfying ¢° = f° and
1 ° -1 1 _oa-lrlg,
g (—h—-3) +/ a(T)A; "Agg (T —s)d1 = AT f*(s)
—h

is the unique solution of Fig = f. The integral equation mentioned
above is of Volterra type, and so it can be solved by successive approx-
imation method. ]

The following result is obtained from Lemma 5.1 in [8].

LEMMA 2.1. Let f € LP(0,T;H), 1 < p< oo. If
t
/I’V(t—s)f(s)ds:O, 0<t<T,
0

then f(t) =0 ae 0<t<T.

THEOREM 2.1. Let A; be an isomorphism. Then the solution z(t; g, 0)

is identically zero on a positive measure containing zero in [—h,T) for
T > h if and only if ¢° = 0 and g' = 0.

Proof. With the change of variable and Fubin:’s theorem we obtain

0
/}Ut(s)gl(s)ds
—h i

= W(t—s—h)A;g*(s)ds
—h
1] s
+ [h(»[h W(t--s+ T)a(T)AQGT)gl(S)dS
0
= [ Wit i roslg (h =)

+ ‘/jh a(T)A2(1)g (1 — s)dr}ds
0
= W(t+ s)[F1g*](s)ds.

—h
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Thus the mild solution z(¢; g, 0) is represented by
0
x(t) = W(t)g® + / W (t + s)[F1g']/s)ds.
-k

Thus, we have that z(0) = W(0)g° = ¢° = 0 in H. Because that
Aj is an isomorphism and, we obtain that F} is isomorphism from
Proposition 2.2. Therefore from Lemma 2.1 z(¢; g,0) = 0 if and only if
¢®=0and ¢! =0. O

Let I = [0,7], T > 0 be a finite interval. We introduce the trans-
posed system which is exactly same as in S. Nakagiri[8]. Let ¢ € X™,
q; € L1(I; H). The retarded transposed system in H is defined by

(2.3)
1y(t °
(i/i(t )y Agy(t) + Ajy(t + h) + / a(s)Axy(t — s)ds
—h
+qr(t):0 a.e. tE[,
(2.4)

y(T)=¢q5, y(s)=0 ac.se(T,T+h.

Let W*(t) denote the adjoint of W (¢). Then as proved in S. Nakagiri
18], the mild solution of (2.3) and (2.4) is defined as follows:

y(t) = W*(T — 1)(5) - / W (€ — )7 (€)de,

for t € I in the weak sense. The transposed systemn is used to present
a concrete form of the optimality conditions for control optimization
problems.

COROLLARY 2.1. The solution y(t) is identicaliy zero on a positive
measure containing T in [T,T + h' if and only if g3 = 0 and ¢7 = 0.

If the equation (2,3) and (2.4) satisfies the result in Corollary 2.1,
the equation (2.3) and (2.4) is said to have a weak backward uniqueness
property.
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3. Optimality for the regular cost function

In this section, the optimal control problem :s to find a control «
which minimizes the cost function

.
J(u) = (Gz(T),z(T))n +/0 (D()x(t),z(t)) i 4 (Qt)ult), U(t))y)dt

where z(-) is a solution of (1.1) ard (1.2), G € B(H) is self adjoint and
nonnegative, and D € B (0,7 H, H) which is & set of all essentially
bounded operators on (0,7) and Q € By, (0,T;(/,U) are self adjoint
and nonnegative, with Q(¢) > m for some m > 0, for almost all ¢.

Let us assume that there exists no admissible control which satisfies
Gz(T; g,u) # 0.

THEOREM 3.1. Let U,4 be closed convex in LQ(O, T;U). Then there
exists a unique element u € U,, +uch that

(3.1) J(u) = inf J(v).

nell gy

Moreover, it is holds the followiny inequality:

| vt = @yt vle) ~ ulsnas > 0

where y(t) is a solution of (2.3) and (2.4) for .nitial condition that
y(T) = Gz (T) and y(s) = 0 for s € (T,T + h| substituting qi(t) by
D(t)z,(t). That is, y(t) satisfies the following transposed system:

(3.2)
dult 0
—Z:ig—z + Aly(t) + ATy(t -+ h) + / a(s).4oy(t — s)ds
—h
+ D(t)-ru(t) - O a.e. e [,
(3.3)

y(T) = Gz (T), y(s)=0 aese(TT+h

in the weak sense.
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Proof. Let x(t) = z(t; g,0). Then it holds that
J(v) = (v, v)
where

(u,v) =(Gzu(T),z(T))H

T
+/0 (D@)zu(t), 70 (8)) + (Qt)u(t), v(t))u)dt

The form 7(u,v) is a continuous bilinear form in L2(0,T;U) and from
assumption of the positive definite of the operator Q) we have

m(v,v) > clv|? ve L¥0,T;U .

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a
unique u € L?(0,T;U) such that (3.1). If u is an optimal control (cf.
Theorem 1.3. Chapter 1 in [6]), then

(3.4) JWw=1u) >0 u€ Uy,

where J (u)v means the Fréchet derivative of J at u, applied to v. It
is easily seen that

’

z (D)0 —w) = (v —u,z, (1)
= Zy(t) — xy ().

Since

’

J (W) (v —u) = 2Czu(T), 2y (T) — zu(T))

T
+ 2/ (D(t)xu(t), zo(t) - zu(t))
0
+2(Q(t)u(t), v(t) — u(t))dt,
(3.4) is equivalent to that

T
/0 (BoW™ (T = s)(Gz(T), v(s) — v(s))ds+
- -
/ (B; / W*(t — s)D(t)x, (t)dt + Qu(s),v(s) — u(s))ds
0

0
> 0.
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Hence
T
y(s) = W*(T — 8)Gz (T + / W*(t — s)D(t)z,(t)dt

is solves (3.2) and (3.3). O

Let the admissible set U,  be

Usa = {u € L*(0,T;U) : u(t) e W}

where W is a bounded subset in U.

COROLLARY 3.1 (MAXIMAL PRINCIPLE). Let W be bounded and
Q = 0. If u be an optimal solution for J then

max(v, Ay Byg(t ) = (u(t), Ay Bgq())

almost everywhere in 0 < t leT" where q(t) = —y(t) and y(t) is given
by in Theorem 3.1.

Proof. We note that if U,y is bounded ther. the set of elements
u € Uyq such that (3.1) is a nonempty, closed and convex set in U,y.
Let ¢ be a Lebesgue point of u, v € Uyg and t <. t + ¢ < T. Further,
put
v, if t<s<itte
ve(s) = .
u(s). otherwise.

Then Substituting v, for v in (3.4 and dividing the resulting inequality
by €, we obtain

LBt — wls)ds 20

€

Thus by letting ¢ — 0, the proof is complete. 0

Thus from Theorem 3.1 the result is obtained

THEOREM 3.2 (BANG-BANG PRINCIPLE). Let B} be one to one
mapping. Then the optimal control u(t) is a bang-bang control, i.e, u(t)
satisfies u(t) € OW for almost all t where OW denotes the boundary
of Uad-
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Proof. On account of Corollary 3.1 it is enough zo show that Bjq(t)
# 0 for almost all t. If Big(t) = 0 on a set e of positive measure
containing 7', then g(¢) = 0 for each t € e. By Corollary 2.1, we have
Gz, (T) = 0, which is a contractiorn. O

From now on, we consider the case where U,y = L?(0,7T;U). Let
z,(t) = z(t; 9,0) + f(; W (t — s)Bouls)ds be solution of (1.1) and (1.2).
Define T € B(H,L*(0,T;H)) and I'r € B(L?(0,T H),H) by

Tt = [ Wit sos)ds.
.
Tpo = /0 WD — 5)é(s)ds.

Then we can write the cost function as

(3.5)
J(u) =(G(x(T; g,0) + TrBou), (z(T; 9,0) + "r Bou)) u
+ (D(z(+; 9,0) + TBpu),z(+;9,0) + T Bow) 20,11
+(Qu,u) 20,150y

The adjoint operators T and 17} are given by

;
o0 = [ Wl = (e,
(Tro)(t) = W*(I' — t)o.

THEOREM 3.3. Let U,y = 112(0, T, U7). Then taere exists a unique
control u such that (4.1) and

u(t) = — A" BRy(t)
for almost all t, where A = Q+ B " DT By + By1 1 GT}. By and where

v(t) is a solution of (2.3) and (2.4) for initial condition that y(T) =
sx(T) and y(s) = 0 for s € (T, T - h] substituting ¢ (t) by Dxz(t).
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Proof. The optimal control for J is unique so:ution of

i

(3.6) J (n)v = 0.

From (3.5) we have

7

J (u)v =2(G(z(T; 9,0) = TrBou), Tr Byv))
+2(D(x(-; 9,0 + T Bou), T By»)
+ 2(Qu, v)
=2((Q + By1"DI'Bi + BT;GT) Boy)u,v)

+2(BgT"Dx(-. 9,0) + BiT7;Ge(T; g,0),v).
Hence (3.6) is equivalent to that
(Au+ BgT™Dx(t; 9,0) + ByT7rGz(T;¢,0),v) =0

since A™! € B,o(0,7; H,U) (see Appendix of [3]). Hence from The
definitions of T" and T’y it follows that

y(t) =T Dx(t; g,0) + I17Gz(T; g,0)

-
=WHT - t)Gz(T) + / W*(s — t)Dz(t)ds.
Jt

Therefore, the proof is complete. 0
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