• Title/Summary/Keyword: Mathematical principle of China

검색결과 20건 처리시간 0.042초

Modified Dual-Buck Inverter Based on Resonant Link

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1421-1428
    • /
    • 2015
  • The efficiency and reliability of the dual-buck inverter (DBI) were greatly improved by eliminating the shoot-through problem and optimally designing the freewheeling diode. The traditional DBI suffers from large harmonic components with low output voltage and large capacity output filter inductor. To overcome the aforementioned disadvantages, a modified DBI (MBDI) was proposed by adopting a quasi-resonant link and pulse density modulation (PDM). This paper first introduces the working principle of the MBDI and PDM, and then the selection principle of system parameters is presented. Finally, a mathematical model of the MBDIis built, and an experiment prototype is set up. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the scheme.

A NEW 3-PARAMETER CURVATURE CONDITION PRESERVED BY RICCI FLOW

  • Gao, Xiang
    • 대한수학회지
    • /
    • 제50권4호
    • /
    • pp.829-845
    • /
    • 2013
  • In this paper, we firstly establish a family of curvature invariant conditions lying between the well-known 2-nonnegative curvature operator and nonnegative curvature operator along the Ricci flow. These conditions are defined by a set of inequalities involving the first four eigenvalues of the curvature operator, which are named as 3-parameter ${\lambda}$-nonnegative curvature conditions. Then a related rigidity property of manifolds with 3-parameter ${\lambda}$-nonnegative curvature operators is also derived. Based on these, we also obtain a strong maximum principle for the 3-parameter ${\lambda}$-nonnegativity along Ricci flow.

Thermal Model for Power Converters Based on Thermal Impedance

  • Xu, Yang;Chen, Hao;Lv, Sen;Huang, Feifei;Hu, Zhentao
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1080-1089
    • /
    • 2013
  • In this paper, the superposition principle of a heat sink temperature rise is verified based on the mathematical model of a plate-fin heat sink with two mounted heat sources. According to this, the distributed coupling thermal impedance matrix for a heat sink with multiple devices is present, and the equations for calculating the device transient junction temperatures are given. Then methods to extract the heat sink thermal impedance matrix and to measure the Epoxy Molding Compound (EMC) surface temperature of the power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead of the junction temperature or device case temperature are proposed. The new thermal impedance model for the power converters in Switched Reluctance Motor (SRM) drivers is implemented in MATLAB/Simulink. The obtained simulation results are validated with experimental results. Compared with the Finite Element Method (FEM) thermal model and the traditional thermal impedance model, the proposed thermal model can provide a high simulation speed with a high accuracy. Finally, the temperature rise distributions of a power converter with two control strategies, the maximum junction temperature rise, the transient temperature rise characteristics, and the thermal coupling effect are discussed.

QUASILINEAR SCHRÖDINGER EQUATIONS FOR THE HEISENBERG FERROMAGNETIC SPIN CHAIN

  • Yongkuan Cheng;Yaotian Shen
    • 대한수학회보
    • /
    • 제61권2호
    • /
    • pp.541-556
    • /
    • 2024
  • In this paper, we consider a model problem arising from a classical planar Heisenberg ferromagnetic spin chain $-{\Delta}u+V(x)u-{\frac{u}{\sqrt{1-u^2}}}{\Delta}{\sqrt{1-u^2}}={\lambda}{\mid}u{\mid}^{p-2}u$, x ∈ ℝN, where 2 ≤ p < 2*, N ≥ 3. By the Ekeland variational principle, the cut off technique, the change of variables and the L estimate, we study the existence of positive solutions. Here, we construct the L estimate of the solution in an entirely different way. Particularly, all the constants in the expression of this estimate are so well known.

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • 국제학술발표논문집
    • /
    • The 7th International Conference on Construction Engineering and Project Management Summit Forum on Sustainable Construction and Management
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

SPATIAL BEHAVIOR OF SOLUTION FOR THE STOKES FLOW EQUATION

  • Liu, Yan;Liao, Wenhui;Lin, Changhao
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.397-412
    • /
    • 2011
  • In this paper, the equation of the transient Stokes flow of an incompressible viscous fluid is studied. Growth and decay estimates are established associating some appropriate cross sectional line and area integral measures. The method of the proof is based on a first-order differential inequality leading to an alternative of Phragm$\'{e}$n-Lindell$\"{o} $f type in terms of an area measure of the amplitude in question. In the case of decay, we also indicate how to bound the total energy.

Dynamic analysis of the micropipes reinforced via the carbon dioxide adsorption mechanism based on the mathematical simulation

  • Liu, Yunye
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.185-196
    • /
    • 2022
  • In this paper, the dynamic characteristics of a composite cylindrical beam made of a mechanism of carbon dioxide absorption coated on the tube core are investigated based on the classical beam theory coupled with the modified couple stress theory. The composite tube structures are assumed to be uniform along the tube length, and the energy method regarding the Hamilton principle is utilized for generating the governing equations. A powerful numerical solution, the generalized differential quadrature method (GDQM), is employed to solve the differential equations. The carbon dioxide trapping mechanism is a composite consisting of a polyacrylonitrile substrate and a cross-link polydimethylsiloxane gutter layer. Methacrylate, poly (ethylene glycol), methyl ether methacrylate, and three pedant methacrylates are all taken into account as potential mechanisms for capturing carbon dioxide. The application of the present study is helpful in the design and production of microelectromechanical systems (MEMS) and the different valuable parameters, such as the length-scale parameter, rate of section change, aspect ratio, etc., are presented in detail.

Parallel-Connected Magnetic Energy Recovery Switch Used as a Continuous Reactive Power Controller

  • Wei, Yewen;Fang, Bo;Kang, Longyun;Huang, Zhizhen;liu, Teguo
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1494-1503
    • /
    • 2016
  • Power quality promotion has received increasing attention because of the wide use of semiconductor devices in recent decades. Reactive power regulation is crucial to ensuring the stable operation of power systems. In this study, a continuous reactive power controller, which is referred to as a parallel-connected magnetic energy recovery switch (MERS), is developed to regulate voltage or power factor in power grids. First, the operating principle is introduced, and a mathematical model is built. Second, a new control method for restraining current harmonics and the peak voltages of capacitors is presented. Using the proposed method, the MERS shows a wide range in terms of reactive power compensation. Finally, the performance of the proposed controller is demonstrated through computer simulations and experiments. Unlike STATCOMs, the proposed controller entails low losses, adopts a small dc capacitor, and offers ease of use.

LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS

  • Wang, Jian;Su, Meng-Long;Fang, Zhong-Bo
    • 대한수학회보
    • /
    • 제50권1호
    • /
    • pp.37-56
    • /
    • 2013
  • This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.