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SPATIAL BEHAVIOR OF SOLUTION
FOR THE STOKES FLOW EQUATION

YAN Liu, WENHUI L1A0, AND CHANGHAO LIN

ABSTRACT. In this paper, the equation of the transient Stokes flow of
an incompressible viscous fluid is studied. Growth and decay estimates
are established associating some appropriate cross sectional line and area
integral measures. The method of the proof is based on a first-order
differential inequality leading to an alternative of Phragmén-Lindelof type
in terms of an area measure of the amplitude in question. In the case of
decay, we also indicate how to bound the total energy.

1. Introduction

In 1960-1980’s, principle of Saint-Venant type used to be one of the most
popular subjects of applied mathematics and mechanics. A great number of
investigation results have expanded enormously the classical Saint-Venant prin-
ciple. A review of recent work on Saint-Venant’s principle is given in the work
of Horgan and Knowles [6], and has been periodically updated by Horgan [3],
[4]. A common feature of Saint-Venant type theorems is to establish the ex-
ponential decay estimates of energy with axial distance from the near end of a
semi-infinite strip or cylinder.

Knowles [9] established exponential decay estimates for solution of the bi-
harmonic equation in his study of Saint-Venant’s principle in plane isotropic
elastostatics for bounded, simply connected domain of general shape. Since
then, many authors have investigated the same problems in a semi-infinite strip
(see [5], [3] and the references cited therein). Their common goal has been to
try to establish an energy decay results. It is well known that another inter-
prelation for the biharmonic equation in the plane is that of the stream function
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in two dimensional Stokes flow, hence the results of the Saint- Venant’s princi-
ple in plane elastostatics are also relevant to the study of the spatial evolution
of stationary stokes flows in a semi-infinite paralled plate channel. Numerous
authors have dealt with Saint-Venant type decay estimate for solutions of the
biharmonic equations in a semi-infinite channel in R?, we mention in particular
the papers of Flavin [1], Horgan [5], Knowles [8] and Flavin et al. [2]. In a
paper [10], Lin has established energy decay estimates for solutions of the plane
Stokes flow in a semi-infinite channel, subject to nonzero boundary conditions
on the end only. Such estimates yielding an exponential decay of energy with
axial distance from the end are based on differential inequality techniques de-
veloped by Knowles [9], and Horgan and Knowles [6] in their investigations
of Saint-Venant’s principle in classical elasticity theory. Recently, Song [13]
investigated the same time-dependent Stokes flow problem and obtained an
analogous result with an improved decay rate. The papers concerning with
biharmonic equations may be viewed as a version of Saint-Venant’s principle
in steady state or transient stokes flow, but common to all was the assumption
that the solution must satisfy some a priori decay criterion at infinity. One
would like to remove this a priori restriction. One way to do this is to derive
an appropriate Phragmén-Lindelof alternative.

The classical Phragmén-Lindel6f theorem states that harmonic function whi-
ch vanish on the cylindrical surface must either grow exponential or decay ex-
ponential with distance from the finite end of the cylinder. Phragmén-Lindel6f
type alternative results for harmonic functions were obtained by Horgan et al.
[7] under non-linear boundary conditions on the lateral surface of a semi-infinite
cylinder. Particularly, Payne et al. [12] established the Phragmén-Lindelof
type results in three type special domains in R2. Additional references for
Phragmén-Lindelof type results may be found in [11] and [4] therein.

In this paper, we investigate the spatial behaviour for the equation of the
transient Stokes flow of an incompressible viscous fluid. We use a stream func-
tion to transform the equation to a biharmonic equation, unlike many other
papers deal with the biharmonic equation, our method of the proof is based on
a first-order differential inequality not the second-order differential inequality.
In the next section we will formulate the initial and boundary value problem
that serves as the basis for our analysis. Section 3 is devoted to deriving the
Phragmén-Lindelof type alternative results. In the final section we will indicate
how to bound the total energy.

In the present paper, the comma is used to indicate partial differentiation
and the diﬁergntiation with respect (;50 the direction x; is denoted as , k, thus

u u

u, denotes 77, and wu; denotes %¢. The usual summation convection is

employed with repeated Greek subscripts a summed from 1 to 2. Hence, uq, o =

2 o)
ZQZI 6;2 :
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2. Basic equation

We consider the time-dependent Stokes equations governing the transient
slow flow of an incompressible slow viscous fluid on an unbounded region €2
defined by

(2.1) Qg := {(.1'1,.’172> | 1 >0, 0< e < h},
where h is a fixed constant, and we introduce the notation
(2.2) L.={(x1,22) |21 =22>0, 0 <y <h}.

The velocity field v, (21, 22,t) and the pressure p(x1,xa,t) (a=1,2) for the
transient Stokes flow of an incompressible viscous fluid are to be classical solu-
tions of the initial-boundary value problem:

(2.3) Vot = VAU, —po In Qo x [0,00),
(2.4) Voo =0 In Qg x [0,00),

(2.5) Vo (21,0,t) = vo(z1,h,t) =0 a=1,2,
(2.6) 00 (0,22,t) = fo(x2,t) a=1,2.
(2.7) Vo(z1,22,0) =0 (21,22) € Qo,

where A is the two dimensional Laplace operator and v is the constant kine-
matic viscosity. The functions f,(z2,t) are assumed to satisfy the compatibility
fa(0,t) = fo(h,t) = 0. For simplicity, it is assumed that fLo fidzo = 0 for all
t>0.

In order to eliminate the pressure term p o, we introduce the stream function
u(x1,x2,t) such that

(28) U1 =Up2,V2 = —Uj\.

So the equations (2.2)-(2.6) are transformed into the following fourth order
initial-boundary value problem:

(2.9) A*u=(Au); in Q,
(2.10) w(z1,0,t) = up(x1,0,¢) =0 1 > 0,t >0,
(2.11) u(xy, hyt) = up(x1,h,t) =0 21 >0,¢ >0,
x2
(2.12) u(0,z2,t) = g1 (xo,t) = / fi(s,t)ds 0<zo <h,t>0,
0

(2.13)  u1(0,22,t) = g2(x2,t) = —fao(2,) 0 <20 < Dyt >0,

(2.14) Uo(21,22,0) =0 21 >0,0 <x2 <h,

where we make no assumption on u as x1 — oco. Here A is the harmonic oper-
ator, and A? is the biharmonic operator, u,, is the outward normal derivative,
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and we adapt the standard notations, i.e., u; = l%i,u)t = %. The differen-

tiable functions g; and go are prescribed and assumed to satisfy appropriate

compatibility conditions: ¢1(0,t) = g1(h,t) = g2(0,t) = ga(h,t) = ¢,(0,t) =

g'l(h, t) =0, where g/1 denotes the partial differentiation with respect to .
We define energy expressions of the forms:

t z z
Ei(z,t) = 2/ / / u,anu,andAdn—i-/ / U,0fU,apdA|p=t
0 zZ1 Lg zZ1 Lg
t z z
(2.15) +2/ / / u,lagu,lagdAdn—i—/ / U1, 10dAl=t,
0 zZ1 Lg zZ1 L§

1 (7 1 [*
(2.16) Es(z,t) = f/ / U,08U,agdA|p=t + f/ / U1aU,10dA|p=¢,
2 Jo Ji. 2 Jo Ji.

where we use the summation convention on repeated indices and the Greek
subscripts range over 1, 2. Our purpose is to determine the alternative that
either Ey(z,t) grows exponentially or Es(z,t) decays exponentially as z — co.

We start our analysis by the following identity. On using the divergence
theorem and the initial-boundary conditions (2.10)-(2.14), it leads to

t z
0= / / / u ., (Au, — A*u)dAdn
0o Jo Jrg
t z t
= —/ / / u,anu,andAdn—&—/ / U U, 1pdx2dn
0o Jo Jr. 0o JL,
t t z
—// u’nuﬁlndazgdn—&—/ / / U anU,assdAdn
0 JLo 0o Jo Jrg
t t
—/ / u’nu’lggdajgdn—i—/ / U U 188dT2dn
0 JL, 0 JLo
t z t
—/ / / u,m,u,andAdn%—// U, 1nda2dn
0o Jo Jr; 0o JL.
t t z
—// u7nu71ndx2d77—/ / / U aBnU,asdAdn
0 Lo 0 0 L¢
t t
—|—/ / u7anu71ad:c2d77—/ / U anlh,16dT2dN
0o JL, 0 JLo
t t
_/ / uynu_ngdxzdn—i—/ / U pU,188dT2dn.
0 JL, 0 JLo

From (2.17), we define

(2.17)

t
P1(2,t) = _/ / (Ut 1 + Uantia — Unu,1pp)dTradn
0 JL,
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(2.18) / / / uanuandAdnff/ / U Bl apdA|n=t + ¢$1(0,1).

Deriving as (2.17), we obtain

t z
0= / / / wiy (Bu, — A2u)dAdy
0o Jo JL¢
t z 1 z
(2.19) = 7/ / / uvlaguymgdAdnff/ / U 10l 10dA|p=
0o Jo JL. 2J)o Jr.

t
+/ / (U 00l aa1 + U 12U 2 )dx2dn
0 L,

t
_/ / (U,aal,aa1 + U 12U 2, )dxadn.
0o JLg

From (2.19), we define
(2.20)

¢ (Z t / / U, oo, 100 +u 12U 27])dx2d77

—///U,laﬁu,la,ﬁdAdﬁ—ﬁ/ / U 1aU10dAl=t + ¢2(0,1).
o Jo JrL. 0 JLe

‘We now introduce the function
(2.21)

¢(Z7t) = ¢1(Z,t) + ¢2(Z’t)

t
= _/ / (Ut 17 + UanUia — Unt,1pp)dT2dn
0o JL,

t
- / / (u,aau,laa + u712u72n)d’l}2d’l’]
0 L.

t z -
1
= —/ / / U,anu,andAdﬂ - 5/ / U}aﬁu,agdA‘n:t + ¢1(0,1)
0o Jo JILg o Jr.
t z 1 .
- / / / U 108U, 1050 Adn — 5 / / U 10U10dA|n=t + $2(0,1).
0o Jo JLg o Ji.

Obviously, from the definition of ¢(z,t), we obtain

(2.22) 2 o1 <0

From the definition of (2.21), we also have for arbitrary z > 2z > 0,

o(z,t) — @(zo,t ///uomuandAdn // U,0fU,0gdA|p—t
Le
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t z 1 z
(2.23) 7/ / / u71aﬁu71a/3dAdnf§/ / U 1ol 10dA|p=¢.
0 zZ0 Lg Z0 Lg

From (2.23), we can see that if ¢(z,t) — 0 as z —> oo, then

o(z,t) // / U,anU,andAdn + = / / U,08U,08dA| =t
Le¢
(2.24) +/ / / u,laﬁu,laBdAdr]—l—f/ / U 10U, 10dA|p=t.
0 Jz L¢ 2 z L¢

On the other hand, if —¢(z,t) is unbounded below by a positive number

x(z,1), then
t z 1 z
/ / /L U, anU,andAdn + 7/ / U,08U,0gdA|p=t
3
/ / / U 108U, loc,@dAdn + = / / U 1aU 1adA|17 t
Le¢ Lg
(2.25) > x(z,t) + ¢(0,¢).

In the following part, we will use the following inequality: Clearly, we know,
for u(z,0,t) = 0, we have

)
u(z,x27t):/ us(z,s,t)ds,
0

thus, using Schwarz’s inequality, we easily find that

(2.26) / wldry < h2/ U?le'g.
L. L

z

3. Phragmén-Lindel6f type alternative results

In this part, we’ll use the technique which was used by Lin and Payne in
[11]. For ¢ > 0, let ¢ be a value of time between 0 and ¢, at which function

1 1
m(z,t) = i/L U,aBU,08dT2|n—t + §/L U 1aU,100%2] =t

z z

gains its maximum value, i.e.,

- 1 1
m(z,t) = 5/ u7a5u7a5da§2|n:g + 5 / u71au71ada¢2|n:5
L. L.
1 1
(3.1) = Orgsa%(t 5 . u,agu’agdxﬂn:s + 5 ] uymuyladxﬂnzs .

‘We now define

(3.2) t* = lim { sup i(z)}.

Z—00 0<2<2
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Following the same procedure as in producing t*, we can also define 0 <
t7 <t,0<t5 <tsuch that

o1 1
(3.3) mu(z,t1) = i/L Uyap,apdTal,_g :012%{24 U,Ckﬁ“,aﬁd@n:s}a

z z

. 1 1
(34) mQ(Z,tQ) = 5 /Lz u71au,1ad.’22|n:t‘2 = org?%(t {2 /Lz uvmu_yladxgn_s} .

We also define
t; = lim { sup t](z)},

Z—00 0<2<Z

and

t; = lim { sup t;(z)}

Z—00 0<2<Z

From the definitions of mq(z,%1), ma(z,t2) m(z,t) and ti,t5, we can easily
get

(3.5) ma(z,t5) <my(z,t]) < m(z,t%).

Now, we write

(3.6)
/ / / U, anl,andAdn— / / U apl,agdA|q=t-
Le
/ / / U 1apU, 1a[3dAd77_ 5 / / U 1aU 1adA‘n =t=+ ¢(207 )
Le Le¢

From (2.21), we can get

o
(3.7) |p(z,t7)| < ‘/ / (U U1y + Uant1a — U,nu,lﬂﬁ)d@dnl
o JL.

-
+ ’/ / (u,aau,laa + U,12u,2n)d$2dn‘.
0 L.

Making use of Schwarz’s inequality, inequality (2.26), and Young’s inequality,
it yields

o
(3.8) )/ / u,nu,lndxgdn‘

0 L,

€1 ¢ 1 r

< h —/ / uﬁgnuyzndean‘f’ 7/ / u,lnu,lnd‘ern )
2 Jo Jo. 2e1 Jo Jr.

-
(39) )/ / ’Uganu,ladedn‘

0 L,
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t*
/ / U anl, andl’gd?’] + 5 / / U1aU, ladedn
0 L,
+
/ / U anU,andT2dn + 2—t / u,1au,1ad$2|n:t;
0 €2 L,
o
1 *
/ / U, andzodn + 20, / Uapt,apdTsln=t;,
0o JL, €2 L.
t*
/ / U nl, laadl?dn‘
0
S
< h [ 3 / / U 2nU, Qndl'zdn + — % / / U 1ol lﬁﬁdedn‘|
3
€3 1
<h 7/ / u,gnuygndxgdn—i—f/ / u,laﬁu,laﬁd:EZdn y
2 0 ; 263 0 .
1+
(311) ’/ / ’Ugaau,laadedn’

IN
ST

IN
TN

~

z

IN
TN

(3.10)

1 v
< — / / U, Bﬁdfﬁzdn + — % / / u,aalu@aldmZdn
4Jo JL,
€4 4 1 i
< 5t Uaatl,p5dsln=t; + 5— U1t pp1dw2dn
L. €4 Jo L,
1 t
g t / U o8, agdm2|,7 tx + %, / / U 105U, 108dT2dn,
4Jo JL,

(3.12) )/ /U12U2nd$2dn|

€5 1 a

*/ / U 12U, 12d9€2d77+f/ U 29U 2, dT2dn
2 0 255 0 Lz

€5 1 ¢

=t U 08U . 03dTa | pepr + — U.op U ondrad
D) /L apU,apdT2|n=t; +2€5 ; /L 2nU,2ndxadn

E5 x 1 ¢
< Et / U 05U apdTo|p=t: + 3er / U 20U, 2 dodn).
L.

L. €5 Jo

IN

IN

v

If we choose 1 = §7 e =1,e3 =%,

(3.7)-(3.12), we obtain

(3.13) ool < (S w) (<2220,

g4 = 1, €5 = 1, by combining (3.5) and

where k = §h+ 1.
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We may write (3.13) as two inequalities:

0= t) _ —d(zt)

(3.14)

0z - %t* +k’
and
(3.15) _04(z,t) > f(z t )

The following discussion will be divided into two cases.
Case 1: If there exists a point (z1,t*) such that —¢(z1,t*) > 0, then for all
z > z1, —¢(z,t*) > 0. An integration of (3.14) leads to

3.16 (2, ") > —p(z1, 1) ex (Z_Zl).
(310 (217) 2 (e ) e (0

Case 2: If there doesn’t exist a point (z1,t*) such that —¢(z1,¢*) > 0, then
for all z > 0, ¢(z,t*) > 0. We have, from (3.15),

3.17 bz, 1) < H(0, ) ex (_Z>
(317) () £ 00, e gy

From (3.16), we can get lim (—¢(z,t*)) = oo, that is to say for z large
zZ—00

enough, we can get

—p(z,t") > —2¢(21,1%).
From (3.6), we get

t* z z
¢(z,t*)§2/ / /L uanu,andAdn—i—/ / U,aBU,agdA|p=t-
¢
+2/ / / U 108U, MBdAdn—l—/ / U 10l 10dA|p=¢-
Le¢ Le¢

Combining (3.16) and (3.18), we obtain
c1 = * *
(3.19) Zlggo exp ( Eyra k) Ei(z,t%) > —¢p(z,t%).

Clearly, if lim ¢(z,t*) = 0, we can easily get from (3.6) that
Z—00

t* oo 1 oo
:/ / / u,anu,andAdn—l—f/ / U,0BU,aBd Ayt
0 z L¢ 2 z L¢
t* oo 1 oo
(320) +/ / / Uylagu’lagdAdn-i-*/ / uymuyladA|n:t*.
0 z Lg 2 z Ls
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We have

1 [ 1 [
By (2,t") = 5/ / U 0pU,apdAly=t- + 5/ / U 10U 10dA] =t~
z LE z Lg
(3.21) < é(z, ).

Summarizing all the results above, we conclude the following theorem:

Theorem 1. If u is a solution of the initial boundary value problem (2.9)-
(2.14), then, either

. zZ1 — Z
3.92 1 A2 B ()] > =z, 1Y),
( ) im exp (gt* "y 1(z )) > —p(21,t")

zZ—>00

is satisfied, or the “energy” function Es(z,t) satisfies the estimates

Ex(z,t) < Ba(2,1%) < (=) < 6(0,47) exp [(— 3t*1+ k) z]

(3.23) < 6(0,4%) exp thik) z] ,

where t* is a value (see (3.2)) belonging to (0,t].

4. Upper bound for the total energy

We now show how a explicit bound can be determined for ¢(0,¢*) which
occurred in (3.23).
Under the case of decay, we define

F(z,t") = ¢(z,t")

t* oo 1 oo
= / / / u,anu,andAdn—i—f/ / U,08U,aBdA|p=t
0 z L¢ 2 z L¢
t* oo 1 0o
(4].) + / / / uylaguylagdAdn + = / / uvlau,ladAM:t*.
0 z L¢ 2 z L¢

If we define
(4.2) F(z,t") = Fy(z,t") + Fa(z,t"),

where

t* oo oo
1
Fi(z,t7) :/ / / U, anU,andAdn + */ / U,apU,apd A=t
0 z L¢ 2 z L¢
t* ) 1 [eS)
FQ(Z,t*) = / / / uﬁlaﬂuJalgdAdn + */ / ’U,,10[’LL’1adA|77:t*7
0 z Lg 2 z Lg

and

(4.3)  Fyu(z,t%) = Fi(z,t"),
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t* 00 1 0o
(4.4) Fw(z,t*):/ / / w,anw@ndAdn—i—f/ / W, aW,a8dA|n—t+,
0 z L¢ 2 z L¢

t*  poo 1 [
(4.5) Fuu(z,t") :/ / / uﬁm,w’andAdn—i—f/ / UafW apdA|p=t=,
0 z L{ 2 z Lg

where w(x1,x9,t) is an arbitrary smooth function defined on q that satisfies
the same boundary conditions as u.
By using the Schwarz’s inequality, we get

(4.6) \/Fu(z,t*)Fw(z,t*) > Fuw(z,t%).
It is clear that

t* oo
Fuw(0,t%) = F,(0,t") +/ / / U on (W, an — U,an)dAdn
o Jo JrL.

1 o0
+ 5/ / Uap(Wap — Uap)dAl )=t
o Jre

(4.7) = F (0,t")+ I, + I.

Making use of the divergence theorem, and (2.9)-(2.14), we obtain

t* oo
— / / / u,aom(w,n - U,n)dAdW
o Jo JrL.
t* o
/ / / u,aﬂﬁ’ (w,an - U,an)dAdU
o Jo JrL.
t* oo
- / / / U5 (W,apy — Uapy)dAdn
o Jo JrL.
1 [> -
> 7/ / Uapth,apdAln—t- — 2/ / Uapth,apdAly—t-
2 0 Le 2 0 L¢
1 t* 0o
_ 7(;/*/ / / w,aﬁnw,aﬁﬁdAdn7
261 0 0 Le
1 [ L[
(49) L= U,apW,apdAly=t~ — 3 Uaft,apdAlp—t-
2 0 L 2 0 L¢
i Sl
— = U o Uﬁagdf” —x — 7/ / W, o w,aBdA| =t*
4 0 Le¢ A K 4€2 0 L¢ ’ !

1 (o]
- 5/ / U a8U,apdAln=t+-
o Jre

Setting €1 = 1, &2 = 1, then combining (4.6)-(4.8) and (4.9), we are led to

“48) L

v

(4.10) VIO ETFL0, ) > SF0,17) — Qu(0,)),
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where we have

+* t* oo 1 oo
Q(w(0,t)) = —/ / / W, a8y W, apndAdn + 7/ / W, 08W, 0 dA| =t
2 Jo Jo Jre 2J)o Jr

From (4.10), we can conclude

3

(@1 SR — SFa0 ) < 5 (Ful0, 1) +3Qw(0,1),

Wl =

which implies that

(4.12) \/Fu(O,t*)gg Fw(O,t*)+%(\/Fw(o,t*)—|—3Q(w(0,t*)))%.

Squaring and making use of the arithmetic-geometric mean inequality, we
obtain

(4.13) Fu(0,¢%) < %Fw(o,t*) + gQ(w(O,t*)).

Since we don’t know the value of ¢*, the bound for F,(0,¢*) can be made
explicit only if we can eliminate the dependent on t*. Clearly, we know, for
any function ¢ such that ¢(z,0) =0,

(4.14)

t* t t
/ 2 dws|p—yr =2 / / P pdzadn < / / *dwadn + / / ©% dmadn.
L, 0 L, 0 L, 0 L.

Using (4.14), we obtain

t* oo 1 oo
F,(0,t%) = / / / wyanw,andAdn—i—f/ / W, 08W,apdA| =t
o Jo JiL. 2 /o Le
t e} 1 t e}
< / / / W, anW,andAdn + f/ / / W, 03W o3 dAdN
o Jo Jrg 2Jo Jo Le
1 t oo
+ f/ / / W, a8y W,apndAdn
2J)o Jo Le
= F,(0,1)
and
. t* t* 0o 1 oo
Q(w(0,t%)) = ) W, apnW,apndAdn + ) W 0 pW,apdA|n=t-
o Jo Jr. o Jrg
t t o3} 1 t o3}
< f/ / / wyafgnwagndAdnJrf/ / / W, 0 W, o3dAdn
2Jo Jo Jr. 2Jo Jo Jr

1 t o0
+7// /wﬂﬂnw,(,gndAdn
2J)o Jo Jr.
= Q(w(0,1))
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We can get
.16 - 8
(4.15) F,(0,t%) < KFU,(O,t) + gQ(w(O,t)).
We now define w(xy,xo,t) as
(4.16)
xro a T 8
w(wr,ws,t) = [ [ e e D+ <92($27t) | ;g@,t)dgﬂ e,

Obviously, it is readily to verify w(x1, 2, t) satisfying the same initial-boundary
value conditions as u(x1,xa,1).

Combining (4.15) and (4.16), we can say we have bounded F,(0,t").

The next step is to bound F5(0,¢*).

We will use the following lemma:

Lemma 1. If ¢(z,t*) decays to zero as z — oo, then for arbitrary z > 0,
zo >0,

(4.17) 22Fy(2 + 20,t7) < 8tFy(z,t%).

Proof. We adapt the notation

t* oo
ety = [ [ [ €= 2Pusmpusandady
0 z Lg
1 (o]
(418) +*/ /(f—z)2u71au71adA|n:t*.
2 z Lg

Obviously, we have the following identity

(4.19) 0= /0 /OO/L (€ — 2)%u11(A%u — Au,,)dAdy.
z ¢

By applying the divergence theorem repeatedly and using the initial-bound-
ary value conditions, we obtain

t*  poo t* oo
0= *\/ / / (g — Z)2u,lo¢ﬁu,laﬁdAdn +/ / / Uvaﬁ’llﬂaﬁdAdﬂ
0 Jz Le¢ 0 Jz Le
t* oo 1 oo
_ 2/ / / u 12w 12dAdn — 5/ / (€—- z)2u71au71adA|n=t*
0 z L¢ z L¢

t* poo
(4.20) —|—2/ / / (& — 2)u,12u 2,dAdn).
0 z Lg

Inserting (4.20) into (4.18), we find
(4.21)

t* 0o t* e
Fg(z,t*) < / / / U,0pU a3dAdn + 2‘/ / / (€ — 2)u,12u 2ndAdn)|.
0 4 Lg 0 z Lg
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t* oo %)
/ / / U apl opdAdn < t*/ / u7a5u7a5dA|n:t;
0 z L¢ z L¢
<t (/ / U,apU, a,BdA|17 t* / / U1l ladA|17 t*)
Le Le

(4.22) < AtFy (2, t7)

We have

Using the Schwarz’s inequality, we have

t* oo oo
2‘/ / / (& — Z)U’lgu’gndAd?’]‘ < 5/ / (€ - z)zu,lauﬁladA\n:t*
0 z Lg z L{
1 t* o0
(4.23) + =t / / / u%y, dAdn.
€ Jo Jz Jr. '’

If we choose ¢ = §, combining (4.22) and (4.23), we obtain
(4.24) Fy(z,t*) < 8tFy(z,t%).
We note that for arbitrary zg > 0,
(4.25) Fy(z,t*) > / / / (€ — 2)* U 105U 10pdAdn > 25 Fa(z + 20,t%).
0 z+z0 J L¢
In view of (4.25), we have proved Lemma 1. ]

For we know,

(4.26) / / u,lau71adA|n:t*§/ / U,0pU a3dA|p=t+.
z L5 z LE

Thus, we only need to bound F3(0,¢*) = fot f:o ng U 108U 108dAdN.
Now, we begin to bound

t* 0o t* 1
/ / /u,laﬁmlaﬂdAdn:/ //u}lagu,lagd/ldn
o Jo Jr. o Jo Jr¢
t* 00
(4.27) —|—/ / / U 108U, 103dAdN.
o J1 Jr.

Setting 2 = 0, 20 = 1 in (4.17) leads to

t* S
(428) / / / uymguymgdAdn S StFl (O,t*)
0 1 L¢

Using (4.24), and setting z = 0, we obtain

t* oo
(4.29) / / / U 10pU 10pdAdn < SEF(0,1).
0o Jo Le¢
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Then (4.29) is equivalent to

t* oo
(4:30) [ ] veveardn<siror),
o Jo JiL.

where ¥ = u 4.
For the first integral on the right hand side of (4.25), making a variat trans-
formation x; = %, and using the inequality (4.30), we deduce that

t* 1 t* 0o
/ / / U1apU,1603dAdn = / / £ capti gapdAdn
o Jo JLg 0 J1 JLg

(4.31) < / / U aptt capdAdn < 8tF(0,1%).
o Jo Le¢

Combining (4.28) and (4.31), we finally obtain

(4.32) / / / U1apt,1apdAdy < 16tF; (0, ).
Le

In view of (4.15), (4.26) and (4.32), we can conclude that we have bounded
F(0, 7).
Thus, we have bounded ¢(0,¢*) in terms of data.
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