
Bull. Korean Math. Soc. 61 (2024), No. 2, pp. 541–556

https://doi.org/10.4134/BKMS.b230226

pISSN: 1015-8634 / eISSN: 2234-3016

QUASILINEAR SCHRÖDINGER EQUATIONS FOR

THE HEISENBERG FERROMAGNETIC SPIN CHAIN

Yongkuan Cheng and Yaotian Shen

Abstract. In this paper, we consider a model problem arising from a

classical planar Heisenberg ferromagnetic spin chain

−∆u+ V (x)u−
u

√
1− u2

∆
√

1− u2 = λ|u|p−2u, x ∈ RN ,

where 2 ≤ p < 2∗, N ≥ 3. By the Ekeland variational principle, the cut
off technique, the change of variables and the L∞ estimate, we study the

existence of positive solutions. Here, we construct the L∞ estimate of

the solution in an entirely different way. Particularly, all the constants in
the expression of this estimate are so well known.

1. Introduction

This paper is concerned with the existence of standing wave solutions for
quasilinear Schrödinger equations of the form

(1.1) izt = −∆z +W (x)z − ρ(|z|2)z − κ∆l(|z|2)l′(|z|2)z, x ∈ RN ,

where W (x) is a given potential, κ is a real constant and ρ, l are real functions
of essentially pure power forms. Quasilinear equations of the form (1.1) appear
more naturally in mathematical physics and have been derived as models of
several physical phenomena corresponding to various types of l. For instance,
the case of l(s) = s is used for the superfluid film equation in plasma physics

[5]. In the case l(s) = (1+s)
1
2 , (1.1) models the self-channeling of a high-power

ultra short laser in mater [7]. If l(s) = (1−s) 1
2 , (1.1) also appears in the theory

of the Heisenberg ferromagnetic spin chain. We refer to [2, 3, 12, 17] and their
references for more details on this subject.

Here, our special interest is in the existence of standing wave solutions, that
is, solutions of type ϕ(x, t) = exp(iF t)u(x), where F ∈ R and u > 0 is a real
function. It is well known that ϕ satisfies (1.1) if and only if the function u
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solves the following equation of the elliptic type

(1.2) −∆u+ V (x)u− κ∆l(u2)l′(u2)u = ρ(u2)u, x ∈ RN ,

where V (x) =W (x)+F is the new potential function. If we let l(s) = (1−s) 1
2 ,

ρ(s) = ε′(1− s)−
1
2 and V (x) = λ+ ε′, we get the equation

(1.3) −∆u+ λu− κu√
1− u2

∆
√
1− u2 = ε′

u√
1− u2

− ε′u, x ∈ RN ,

which originally appears in the Heisenberg ferromagnetic spin chain. In the
mathematical literature, few results are known on (1.3). In one dimensional
space, Brüll et al. [4] studied the ground states u for (1.3) with lim

|x|→∞
u(x) = 0.

For higher dimensional space, in [17], Takeno, Homma constructed the expres-
sion of the solution to boundary value problems for second order nonlinear
ordinary differential equations.

More recently, Wang consider the following quasilinear Schrödinger equation:

(1.4) −∆u+ λu− u√
1− u2

∆
√

1− u2 = ε′
u√

1− u2
− ε′u, x ∈ R3.

In [18], Wang generalized the result given in [4] to three dimensional space.

In the case l(s) = sα, ρ(s) = λs
p−1
2 , Liu and Wang in [8] first studied the

quasilinear Schrödinger equation

(1.5) −∆u+ V (x)u− ακ|u|2α−2u∆u2α = λ|u|p−1u, x ∈ RN

by a minimization argument. In [8], the authors proved that (1.5) has a solution
for a sequence of λn → ∞ and a sequence of λn → 0 if α > 1

2 and 4α ≤ p+1 <
2α2∗.

The main objective of the present paper is to study the following quasilinear
Schrödinger equation

(1.6) −∆u+ V (x)u− u√
1− u2

∆
√
1− u2 = λ|u|p−2u, x ∈ RN ,

that is, the case l(s) = (1− s)
1
2 , ρ(s) = λs

p−2
2 . To the best of our knowledge,

up to now there are no results for (1.6) on RN not only for the superlinear case,
i.e., p > 2, but for the eigenvalue problem, that is, p = 2.

We observe that the minimizer of the functional

(1.7) I(u) =
1

2

∫
RN

[(
1− u2

1− u2

)
|∇u|2 + V (x)u2

]
dx

constrained on the manifold

Σ =

{
u ∈ H1(RN ) :

∫
RN

|u|pdx = 1

}
solves the Euler-Lagrange equation (1.6). From the variational point of view,
there exist two difficulties to overcome for this functional (1.7). One is that the
functional is not well defined in H1(RN ). The other is how to guarantee the
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positiveness of the principle part. In order to overcome these two difficulties,
we will focus the following functional

(1.8) I0(u) =
1

2

∫
RN

[(
1− κu2

1− κu2

)
|∇u|2 + V (x)u2

]
dx,

where κ > 0 is a constant. Obviously, if

u0 = inf
u∈Σ

I0(u),

then u0 solves the equation

(1.9) −∆u+ V (x)u− u√
1− κu2

∆
√
1− κu2 = λ′|u|p−2u, x ∈ RN ,

where λ′ = λκ
p−2
2 . For the solution uκ of (1.9), we rescale u0 = κ−

1
2u. Then

u satisfies (1.6). Furthermore, according to [14], (1.9) can be reformulated as
the following problems of the form

(1.10) −div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = λ′|u|p−2u, x ∈ RN ,

where g(t) =
√

1− κt2

1−κt2 . Now, by using the cut off technique introduced by

Wang [18], we continuously extend the domain of the function g(t) to all of
[0,+∞). More precisely, we consider the function

(1.11) gκ(t) =


√
1− κt2

1−κt2 , if 0 ≤ t < 1√
θκ
;√

2θ
(θ−1)2

√
θκt

+ θ2−5θ+2
(θ−1)2 , if t ≥ 1√

θκ
,

where θ > 5+
√
17

2 . Clearly, gκ(t) ∈ C1([0,+∞), [0,+∞)) and gκ(t) decreases
in [0,+∞). Substituting this form for g(t) in (1.10), we obtain the following
Schrödinger equation:

(1.12) −div(g2κ(u)∇u) + gκ(u)g
′
κ(u)|∇u|2 + V (x)u = λ′|u|p−2u, x ∈ RN

and the minimizer of the functional

(1.13) Iκ(u) =
1

2

∫
RN

[g2κ(u)|∇u|2 + V (x)u2]dx

restricted to Σ satisfies the equation (1.12).
Here, the previously defined gκ(t) is obviously bounded. So we can discuss

the mentioned constrained minimization problem in H1(RN ) by the methods
given by Shen, Yan in [15,16]. If we can prove the minimizer uκ of the functional
(1.13) constrained on Σ satisfies max

x∈RN
|uκ(x)| < 1√

θκ
, then this minimizer uκ

is good for what we want since gκ(uκ) = g(uκ) =
√
1− κu2

κ

1−κu2
κ

under this

situation. That is, in this case, the functional (1.13) is exactly the functional
(1.8) and thus uκ is a weak solution of equations (1.9) and (1.10). In [18],
by using the Morse L∞ estimate, the author proved that there exists some
κ0 > 0 such that for all κ ∈ [0, κ0) the solutions found verify the estimate
max
x∈RN

|uκ(x)| < 1√
θκ
. By the way, the same Morse L∞ estimate was also used
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in [1]. But they did not detect the specific expression of κ0 not only in [18] but
in [1].

For the L∞ estimate of the minimizer of the functional (1.13) constrained
on the manifold Σ, we follow the ideas shown in [13, 14] and make the change
of variables

(1.14) v = Gκ(u) =

∫ u

0

gκ(s)ds, u = G−1
κ (v).

Thus the change of variable (1.14) transforms the quasilinear equations (1.12)
into semilinear equations

−∆v + V (x)
G−1
κ (v)

gκ(G
−1
κ (v))

= λ′
|G−1

κ (v)|p−2G−1
κ (v)

gκ(G
−1
κ (v))

, x ∈ RN .

By taking a suitable test function in the equality the weak solution vκ = Gκ(uκ)
satisfies, we achieve an integral inequality. Then, by using the method of
converting integral inequalities into differential inequalities, which can be found
in Lemma 5.1 on p. 71 in Ladyzhenskaya and Ural’tseva [6] and is used to study
the L∞ estimate of the nonlinear elliptic equations on bounded domains, we
construct the L∞ estimate of the solution vκ. We must point out explicitly
that all the constants in this estimate are so well known. At last, the desired
expressions of κ0 is based on the corresponding function uκ = G−1

κ (vκ) is

the solution of (1.9) and the inequality |uκ|∞ ≤ 1/
√
θκ. Consequently, as

previously mentioned, u =
√
κuκ is the solution of (1.6) if κ < κ0.

In this paper, this L∞ estimate is first used on unbounded domain RN for
the quasilinear Schrödinger equation.

Throughout this paper, we assume the potential V (x) ∈ C(RN ,R) satisfies
(V1) V (x) ≥ V0 > 0;
(V2) max

x∈RN
V (x) < +∞.

In this paper, we make use of the following notations: Let X be the com-
pletion of the space C∞

0 (RN ) with respect to the norm

∥u∥ =

[∫
RN

(|∇u|2 + V (x)u2)dx

] 1
2

.

By (V1) and (V2), X is equivalent to H1(RN ). The symbols |u|p and |u|∞
are used for the norm of the space Lp(RN ) with 2 ≤ p < +∞ and p = ∞,
respectively.

The corresponding results are as follows:

Theorem 1.1. For all θ > 5+
√
17

2 , let

(1.15) κ0 := 2−2− 1
a− 1

ap θ−1θ21 (λ1,pCN )
− 1

ap ,
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where a = 1
p − 1

2∗ , p ≥ 2, θ21 = θ2−5θ+2
(θ−1)2 , CN = 1√

n(n−2)

(
nΓ(n+1)

Γ(n
2 )Γ(n+1−n

2 )ωn

) 1
n

is the best Sobolev constant and

λ1,p = inf
u∈Σ

∫
RN

(|∇u|2 + V (x)u2)dx

is the minimum eigenvalue of the self-adjoint operator −△+ V (x) with(
1− θ

(θ − 1)(θ − 2)

)
θ21λ1,p ≤ λ′ ≤ λ1,p.

Then, for κ ∈ (0, κ0), the quasilinear problem (1.9) admits a minimizer uκ

satisfying max
x∈RN

|uκ(x)| <
√

1
θκ under the situations of (V1) and (V2).

Remark 1.2. Recalling that θ > 5+
√
17

2 and θ1 =
√
θ2−5θ+2
(θ−1) , if we take θ = 5,

we achieve the expression

κ0 =
1

5

(
1

2

)5+ 1
a+ 4

ap

(λ1,pCN )−
1
ap .

Theorem 1.3. Assume that (V1), (V2) and κ0 defined by (1.15). Then, for
any κ ∈ (0, κ0), the quasilinear problem (1.6) with

λ = λ′κ
2−p
2

=

[∫
RN

(g2κ(uκ)|∇uκ|2 + g′κ(uκ)gκ(uκ)uκ|∇uκ|2 + V (x)u2κ)dx

]
κ

2−p
2

has a positive solution u satisfying max
x∈RN

|u(x)| <
√

1
θ for any θ > 5+

√
17

2 .

In [9,10], the authors deal with the eigenvalue problems for the case l(s) = s

and the case l(s) = (1 + s)
1
2 , respectively, on bounded domains. However, to

the best of our knowledge, there are no works studying the spectrum of the
quasilinear Schrödinger operator on RN . The quasilinear Schrödinger equa-
tion (1.12) is an eigenvalue problem under the situation of p = 2 and can be
abbreviated as

Au+ V (x)u = λ′u, x ∈ RN ,
where

Au = −∆u− u√
1− u2

△
√
1− u2.

We denote

λ1,κ = inf
|u|2=1

Iκ(u)

as the first eigenvalue of the operator A + V (x), and the eigenfunction corre-
sponding to λ1,κ is u1. In the same way, we define

λ2,κ = inf
u∈M1

Iκ(u),
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where

M1 =

{
u ∈ H1(RN ) : |u|2 = 1,

∫
RN

uu1dx = 0

}
,

as the second eigenvalue. To go step further, we can define multiple eigenvalues
of the operator. If all the eigenvalues are expressed as σ(A+V (x)), namely the
spectrum of the operator A + V (x), then λ1,2 = inf σ(A + V (x)) in Theorem
1.1 and Theorem 1.3.

We must point out that the operator A+V (x) is not a self-adjoint operator
since A is nonlinear. But if

λ1,−∆+V (x) = inf σ(−∆+ V (x))

denotes the first eigenvalue of the Schrödinger equation

−∆u+ V (x)u = λ′u, x ∈ RN

under the conditions (V1) and (V2), then it is easy to see that λ1,−∆+V (x) ∈
[V0, |V (x)|∞]. Let us collect the above results in the following result.

Proposition 1.4. Assume that (V1), (V2) hold. Then the minimum eigenvalue
inf σ(A+V (x)) and the corresponding eigenfunction φ1 of the operator A+V (x)
satisfy(

1− θ

(θ − 1)(θ − 2)

)
θ21V0 ≤ inf σ(A+ V (x)) ≤ λ1,−∆+V (x) ≤ |V (x)|∞

and |φ1|∞ <
√

1
θ , respectively.

2. Existence of minimizers

In this section, we will identify that the functional Iκ(u) restricted to Σ
does indeed have a minimizer. At the beginning of this section, we need the
following lemma to show important properties involving functions gκ(t) and
G−1
κ (t).

Lemma 2.1. For any θ > 5+
√
17

2 , we have

(1) θ1 :=
√
θ2−5θ+2
θ−1 < gκ(t) ≤ 1 for all t ≥ 0;

(2) lim
t→0

G−1
κ (t)
t = 1;

(3) lim
t→∞

G−1
κ (t)
t = 1

θ1
;

(4) t ≤ G−1
κ (t) ≤ 1

θ1
t for all t ≥ 0;

(5) − θ
(θ−1)(θ−2) ≤

t
gκ(t)

g′κ(t) ≤ 0 for all t ≥ 0.

Proof. This lemma is mainly from [18], the proof is provided to readers only
as a convenience. By the definition of gκ(t) and L’Hospital’s rule, properties
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(1)-(3) are obvious. By (1), for t > 0, we have θ1t ≤ Gκ(t) ≤ gκ(0)t, which
implies (4). Now, we prove the property (5). If t < 1√

θκ
, we have

tg′κ(t)

gκ(t)
=
t(g2κ(t))

′

2g2κ(t)
=

−κt2

(1− κt2)(1− 2κt2)
≥ − θ

(θ − 1)(θ − 2)

by direct computation. If t ≥ 1√
θκ
, we also have

tg′κ(t)

gκ(t)
≥ − θ

(θ − 1)(θ − 2)
.

□

Next, we establish that the functional Iκ(u) has a minimizer among the
functions in Σ.

Lemma 2.2. The minimizer of the functional Iκ(u) restricted to Σ is attained
by some uκ ∈ Σ, that is,

Iκ(uκ) = m := inf
u∈Σ

Iκ(u).

Moreover, for any ψ ∈ H1(RN )
⋂
L∞(RN ), the function uκ satisfies

(2.1)∫
RN

[g2κ(uκ)∇uκ∇ψ+ g′κ(uκ)gκ(uκ)|∇uκ|2ψ+V (x)uκψ−λ′|uκ|p−2uκψ]dx = 0.

Proof. We will use the similar methods given in [15,16] to prove this lemma. By
the Ekeland variational principle, we can select a minimizing sequence {un} ∈
Σ, such that

(2.2) Iκ(un) < m+
1

n
,

(2.3) Iκ(w) ≥ Iκ(un)−
∥w − un∥

n
for w ∈ Σ.

From (2.2), it is easy to see that {un} is bounded in H1(RN ). Hence, we may
assume that un ⇀ uκ weakly in H1(RN ).

By taking ψ ∈ H1(RN ) and w = un+tψ
|un+tψ|p ∈ Σ, we have

Iκ(w) =
1

2

(
1

|un + tψ|2p
− 1

)∫
RN

g2κ

(
un + tψ

|un + tψ|2p

)
|∇(un + tψ)|2dx

+
1

2

∫
RN

(
g2κ

(
un + tψ

|un + tψ|2p

)
− g2κ(un + tψ)

)
|∇(un + tψ)|2dx

+
1

2

∫
RN

(g2κ(un + tψ)− g2κ(un))|∇(un + tψ)|2dx

+
1

2

∫
RN

g2κ(un)|∇(un + tψ)|2dx

+
1

2

1

|un + tψ|2p

∫
RN

V (x)(u2 + 2tumψ + t2ψ2)dx.

(2.4)
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It is easy to show that

(2.5) lim
t→0

1

t

(
1

|um + tψ|p
− 1

)
= −

∫
RN

|un|p−2unψdx.

Combining (2.4), (2.5) and the Lebesgue dominated convergence theorem one
get

(2.6)

lim
t→0

Iκ(w)− Iκ(un)

t

=

∫
RN

g2κ(un)∇un∇ψdx+

∫
RN

g′κ(un)gκ(un)|∇un|2ψdx

+

∫
RN

V (x)unψdx− λ′n

∫
RN

|un|p−2unψdx

with

(2.7) λ′n =

∫
RN

(g2κ(un)|∇un|2 + g′κ(un)gκ(un)un|∇un|2 + V (x)u2n)dx.

On the other hand, noticing that

∥w − un∥ ≤ |t|∥ψ∥+
∣∣∣∣ 1

un − tψ
− 1

∣∣∣∣ ∥un + tψ∥,

we achieve

(2.8) lim
t→0

∥w − un∥
t

≤ C.

Thus, by (2.3), it follows that

(2.9)
Iκ(w)− Iκ(un)

t

{
≥ − 1

nt∥w − un∥ ≥ −C
n , if t > 0;

≤ 1
n|t|∥w − un∥ ≤ C

n , if t < 0.

Consequently, from (2.6) and (2.9), we obtain

(2.10)

∫
RN

g2κ(un)∇un∇ψdx+

∫
RN

g′κ(un)gκ(un)|∇un|2ψdx

+

∫
RN

V (x)unψdx

= λ′n

∫
RN

|un|p−2unψdx+ µn,

where |µn| ≤ C∥ψ∥
n . Moreover, from Lemma 2.1(5) and (2.7), we have

λ′n ≤
∫
RN

[g2κ(un)|∇un|2 + V (x)u2n]dx ≤ m+
1

n
.

Then the desired result will follow if we show that this weakly convergence
un ⇀ uκ is actually strong. Indeed, according to Lemma 1.1 of [11], it suffices
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to show that, given ε > 0, there exists R > 0 such that

(2.11) lim sup
n→∞

∫
RN\BR(0)

(|∇un|2 + V (x)u2n)dx < ε.

We consider a cutoff function ηR satisfying ηR = 0 on BR/2(0), ηR = 1 on

RN \BR(0), 0 ≤ ηR ≤ 1 and |∇ηR| ≤ C/R for some constant C > 0. By taking
ψ = unηR in (2.10), we have∫

RN

(g2κ(un)|∇un|2 + g′κ(un)gκ(un)un|∇un|2)ηRdx

+

∫
RN

g2κ(un)un∇un∇ηRdx+

∫
RN

V (x)u2nηRdx

= λ′n

∫
RN

|un|pηRdx+ µn.

By Lemma 2.1(5), Hölder inequality and the property of ηR, we conclude

(2.12)

(
1− θ

(θ − 1)(θ − 2)

)∫
RN\BR(0)

(g2κ(un)|∇un|2 + V (x)u2n)dx

≤ C

R
|un|2|∇un|2 + o(1).

Note that |un|2, |∇un|2 are bounded and the fact g2κ(un) ≥ θ21, it follows from
(2.12) that

lim sup
n→∞

∫
RN\BR(0)

(|∇un|2 + V (x)u2n)dx <
C

R

for R sufficiently large, which yields (2.11). That is to say, the convergence is
indeed strong inH1(RN ). Consequently, {un} convergences strongly in Lp(RN )
for p ∈ [2, 2∗). To go a step further, we conclude that |uκ|p = 1 under the
situation of |un|p = 1. Thus, combining the inequality

m ≤ Iκ(un) < m+
1

n

and the boundedness of uκ which can be inferred from Theorem 4.2 in [16], it
follows that m is achieved at some uκ ∈ Σ which satisfies (2.1). □

Lemma 2.2 shows that the minimizer of the functional Iκ(u) restricted to Σ
is achieved by uκ. Moreover, the Lagrange multiplier λ′ has the expression of
the form

λ′ =

∫
RN

(g2κ(uκ)|∇uκ|2 + g′κ(uκ)gκ(uκ)uκ|∇uκ|2 + V (x)u2κ)dx.

The following lemma gives the range of the Lagrange multiplier λ′.

Lemma 2.3. Let

λ1,p := inf
u∈Σ

∫
RN

(|∇u|2 + V (x)u2)dx.
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Then, the Lagrange multiplier λ′ satisfies(
1− θ

(θ − 1)(θ − 2)

)
θ21λ1,p ≤ λ′ ≤ λ1,p.

Proof. Applying Lemma 2.1(1), (5), we have

(2.13)

(
1− θ

(θ − 1)(θ − 2)

)
θ21|∇uκ|2

≤ g2κ(uκ)|∇uκ|2 + g′κ(uκ)gκ(uκ)uκ|∇uκ|2

≤ |∇uκ|2.
Thus, on the one hand,

λ′ =

∫
RN

(g2κ(uκ)|∇uκ|2 + g′κ(uκ)gκ(uκ)uκ|∇uκ|2 + V (x)u2κ)dx

≤
∫
RN

(g2κ(uκ)|∇uκ|2 + V (x)u2κ)dx

= inf
u∈Σ

∫
RN

(g2κ(u)|∇u|2 + V (x)u2)dx

≤ inf
u∈Σ

∫
RN

(|∇u|2 + V (x)u2)dx = λ1,p.

(2.14)

On the other hand,

λ′ =

∫
RN

(g2κ(uκ)|∇uκ|2 + g′κ(uκ)gκ(uκ)uκ|∇uκ|2 + V (x)u2κ)dx

≥
(
1− θ

(θ − 1)(θ − 2)

)∫
RN

(g2κ(uκ)|∇uκ|2 + V (x)u2κ)dx

=

(
1− θ

(θ − 1)(θ − 2)

)
inf
u∈Σ

∫
RN

(g2κ(u)|∇u|2 + V (x)u2)dx

≥
(
1− θ

(θ − 1)(θ − 2)

)
θ21 inf
u∈Σ

∫
RN

(|∇u|2 + V (x)u2)dx

=

(
1− θ

(θ − 1)(θ − 2)

)
θ21λ1,p.

(2.15)

Combining (2.14) and (2.15), we achieve the desired result. □

3. L∞ estimate

This section is mainly to show the L∞ estimate of the function vκ = Gκ(uκ).
To this aim, noticing that the equality (2.1) implies uκ is the weak solution of
(1.12), we need the following fact first.

Lemma 3.1. For any ϕ ∈ H1(RN ) ∩ L∞(RN ), vκ satisfies∫
RN

∇vκ∇ϕdx+

∫
RN

V (x)
G−1
κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx = λ′
∫
RN

|G−1
κ (vκ)|p−2G−1

κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx.
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Proof. By (2.1), ∀ ψ ∈ H1(RN ) ∩ L∞(RN ), uκ satisfies
(3.1)∫
RN

[g2κ(uκ)∇uκ∇ψ+g′κ(uκ)gκ(uκ)|∇uκ|2ψ+V (x)uκψ]dx=λ
′
∫
RN

|uκ|p−2uκψdx.

For any ϕ ∈ H1(RN ) ∩ L∞(RN ), if we choose ψ = 1
gκ(uκ)

ϕ, we conclude that

∇ψ =
1

gκ(uκ)
∇ϕ− g′κ(uκ)

g2κ(uκ)
ϕ∇uκ.

In order to ensure that ψ = 1
gκ(uκ)

ϕ ∈ H1(RN )∩L∞(RN ), we need to show

that
g′κ(uκ)
g2κ(uκ)

is bounded. In fact, if u ≤ 1√
θκ
, direct computation shows that∣∣∣∣g′κ(u)gκ(u)

∣∣∣∣ = 2κ|u|
(1− κu2)(1− 2κu2)

.

Consequently, there exists some u0 > 0 sufficiently small, such that
∣∣∣ g′κ(u)gκ(u)

∣∣∣ ≤ C

for 0 < u < u0. On the other hand, by Lemma 2.1(5), we have∣∣∣∣ug′κ(u)gκ(u)

∣∣∣∣ ≤ θ

(θ − 1)(θ − 2)
.

So
∣∣∣ g′κ(u)gκ(u)

∣∣∣ ≤ C for u > u0. Thus, combining the fact that θ1 < gκ(u) ≤ 1, we

conclude that
g′κ(u)
g2κ(u)

is bounded.

Substituting 1
gκ(uκ)

ϕ for ψ in (3.1), we obtain∫
RN

[
g2κ(uκ)∇uκ

(
1

gκ(uκ)
∇ϕ− g′κ(uκ)

g2κ(uκ)
ϕ∇uκ

)]
dx

+

∫
RN

g′κ(uκ)gκ(uκ)|∇uκ|2
ϕ

gκ(uκ)
dx+

∫
RN

V (x)
uκϕ

gκ(uκ)
dx

= λ′
∫
RN

|uκ|p−2uκϕ

gκ(uκ)
dx.

That is, for any ϕ ∈ H1(RN ) ∩ L∞(RN ),∫
RN

∇vκ∇ϕdx+
∫
RN

V (x)
G−1
κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx = λ′
∫
RN

|G−1
κ (vκ)|p−2G−1

κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx.

□

The definition of the weak solution and Lemma 3.1 imply that vκ is the
solution of the equation

(3.2) −△v + V (x)
G−1
κ (v)

gκ(G
−1
κ (v))

= λ′
|G−1

κ (v)|p−2G−1
κ (v)

gκ(G
−1
κ (v))

, x ∈ RN .

Now, we construct the estimate of |vκ|∞.
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Lemma 3.2. The solution vκ of the semilinear equation (3.2) has the following
estimate:

|vκ|∞ ≤ 21+
1
2a (2λ′θ−2

1 CN )
1

2ap .

Proof. For any ϕ ∈ H1(RN ), the solution vκ of (3.2) satisfies
(3.3)∫
RN

∇vκ∇ϕdx+
∫
RN

V (x)
G−1
κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx = λ′
∫
RN

|G−1
κ (vκ)|p−2G−1

κ (vκ)ϕ

gκ(G
−1
κ (vκ))

dx.

By taking ϕ = (vκ− l)+ := max{vκ− l, 0} as a test function in (3.3) with l > 0,
applying Lemma 2.1(1), we have

(3.4)

∫
Al

[
|∇vκ|2 + V (x)

G−1
κ (vκ)(vκ − l)+

gκ(G
−1
κ (vκ))

]
dx

= λ′
∫
Al

|G−1
κ (vκ)|p−2G−1

κ (vκ)(vκ − l)+

gκ(G
−1
κ (vκ))

dx

≤ λ′

θ1

∫
Al

|G−1
κ (vκ)|p−1(vκ − l)dx,

where Al =
{
x ∈ RN : v(x) > l

}
and |Al| denotes the Lebesgue measure of the

set Al. Furthermore, by Hölder inequality, Minkowski inequality and Lemma
2.1(4), (3.4) implies∫

Al

[
|∇vκ|2 + V (x)

G−1
κ (vκ)(vκ − l)+

gκ(G
−1
κ (vκ))

]
dx

≤ λ′

θ1

(∫
Al

|vκ − l|pdx
) 1

p
(∫

Al

|G−1(vκ)|pdx
)1− 1

p

≤ λ′

θ21

(∫
Al

|vκ − l|pdx
) 1

p
(∫

Al

|vκ|pdx
) 1

p

≤ λ′

θ21

(∫
Al

|vκ − l|pdx
) 1

p

((∫
Al

|vκ − l|pdx
) 1

p

+ l|Al|
1
p

)

≤ λ′

θ21

(∫
Al

|vκ − l|pdx
) 2

p

+
λ′

θ21
l|Al|

1
p

(∫
Al

|vκ − l|pdx
) 1

p

.

(3.5)

Moreover, using Hölder inequality again and Sobolev inequality |vκ − l|22∗ ≤
CN |∇vκ|22, we achieve the following estimate∫

Al

|vκ − l|pdx ≤
(∫

Al

|vκ − l|2
∗
dx

) p
2∗

|Al|1−
p
2∗

≤ C
p
2

N

(∫
Al

|∇vκ|2dx
) p

2

|Al|1−
p
2∗ .
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That is, (∫
Al

|vκ − l|pdx
) 2

p

≤ CN |Al|(1−
p
2∗ )

2
p

∫
Al

|∇vκ|2dx

≤ CN |Al|2a
∫
Al

|∇vκ|2dx,
(3.6)

where a := 1
p −

1
2∗ . Thus, combining (3.5) and (3.6), we have(∫

Al

|vκ − l|pdx
) 2

p

≤ CN |Al|2a
λ′

θ21

[(∫
Al

|vκ − l|pdx
) 2

p

+ l|Al|
1
p

(∫
Al

|vκ − l|pdx
) 1

p

]
.

(3.7)

On the other hand, noticing that

l|Al| ≤
∫
Al

vκdx ≤
(∫

Al

|vκ|pdx
) 1

p

|Al|1−
1
p ≤ |Al|1−

1
p ,

we obtain l|Al|
1
p ≤ 1. To go a step further, we have

(3.8) CN |Al|2a
λ′

θ21
≤ CN

λ′

θ21

(
1

l

)2ap

.

Moreover, if we take l0 = (2λ′CNθ
−2
1 )

1
2ap , we have

(3.9) CNλ
′θ−2

1

(
1

l0

)2ap

=
1

2
.

Consequently, combining (3.7) and (3.9), we conclude, if l > l0, that(∫
Al

|vκ − l|pdx
) 1

p

≤ 2λ′θ−2
1 CN |Al|2a+

1
p l.

So ∫
Al

|vκ − l|dx ≤
(∫

Al

|vκ − l|pdx
) 1

p

|Al|1−
1
p

≤ 2λ′θ−2
1 CN l|Al|1+2a.

(3.10)

Inspired by Lemma 5.1, which is presented on p. 71 of [6], we consider the
function

f(l) =

∫
Al

|vκ − l|dx.

For this function, we have −f ′(l) = |Al|. Therefore, (3.10) can be rewritten as

(3.11) f(l) ≤ 2λ′θ−2
1 CN l(−f ′(l))2a+1,

i.e.,

l−
1

1+2a ≤
(
2λ′θ−2

1 CN
) 1

1+2a f(l)−
1

1+2a (−f ′(l)).
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If we integrate this inequality with respect to l from l0 to lmax := |vζ |∞, we
obtain

l
1− 1

1+2a
max − l

1− 1
1+2a

0

≤
(
2λ′θ−2

1 CN
) 1

1+2a

(
(f(l0))

1− 1
1+2a − (f(lmax))

1− 1
1+2a

)
≤
(
2λ′θ−2

1 CN
) 1

1+2a (f(l0))
1− 1

1+2a .

(3.12)

Moreover, jointly with (3.11), recalling that l0 = (2λ′CNθ
−2
1 )

1
2ap , we infer that

(f(l0))
1− 1

1+2a
(
2λ′θ−2

1 CN
) 1

1+2a

≤ (2λ′θ−2
1 CN l0|Al0 |1+2a)

2a
1+2a (2λ′θ−2

1 CN )
1

1+2a

≤ 2λ′θ−2
1 CN |Al0 |2al

2a
1+2a

0

≤ 2λ′θ−2
1 CN l

−2ap
0 l

2a
1+2a

0

= l
2a

1+2a

0 .

(3.13)

Therefore, combining (3.12) and (3.13), we have

l
2a

1+2a
max ≤ 2l

2a
1+2a

0 = 2(2λ′θ−2
1 CN )

1
p(1+2a) ,

which implies the desired inequality

|vκ|∞ = lmax ≤ 21+
1
2a (2λ′θ−2

1 CN )
1

2ap . □

4. Proofs of two theorems

Proof of Theorem 1.1. By Lemma 2.2, uκ is the minimizer of the functional
Iκ(u) restricted to Σ and the weak solution of (1.12). In addition, replacing uκ
by |uκ| if necessary, we can assume that uκ ≥ 0. Then, a direct consequence of
Lemma 3.1, Lemma 2.3 and Lemma 3.2 is that vκ = Gκ(uκ) solves (3.2) and
has the estimate

|vκ|∞ ≤ 21+
1
2a (2λ′θ−2

1 CN )
1

2ap

≤ 21+
1
2a+ 1

2ap (λ1,pCN )
1

2ap θ
− 1

ap

1 .
(4.1)

Jointly with Lemma 2.1(4) we infer that

|uκ|∞ ≤ 1

θ1
|vκ|∞ ≤ 21+

1
2a+ 1

2ap θ
−1− 1

ap

1 (λ1,pCN )
1

2ap .(4.2)

Now, to ensure

(4.3) |uκ|∞ <
1√
θκ
,

we select κ0 = 2−2− 1
a− 1

ap θ−1θ
2+ 2

ap

1 (λ1,pCN )−
1
ap . Thus inequality (4.3) can

be satisfied if only κ ∈ (0, κ0). Obviously, the equation (1.12) is indeed the
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equation (1.9) under the situation of |uκ|∞ < 1√
θκ
. So uκ solves (1.9) and we

complete the proof. □

The proof of Theorem 1.3 is obvious since u =
√
κuκ is the solution of the

quasilinear equation (1.6).
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