Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.1.037

LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS  

Wang, Jian (Department of Mathematics Ocean University of China)
Su, Meng-Long (College of Mathematics Luoyang Normal University)
Fang, Zhong-Bo (Department of Mathematics Ocean University of China)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.1, 2013 , pp. 37-56 More about this Journal
Abstract
This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.
Keywords
nonlinear boundary value problem; nonlinear memory; polytropic filtration system; global existence; blow-up;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Acosta and J. D. Rossi, Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition, Z. Angew. Math. Phys. 48 (1997), no. 5, 711-724.   DOI
2 H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), no. 3, 311-341.   DOI
3 J. R. Anderson, Stability and instability for solutions of the convective porous medium equation with a nonlinear forcing at the boundary. I. II, J. Differential Equations 104 (1993), no. 2, 361-408.   DOI   ScienceOn
4 F. Andreu, J. M. Mazon, J. Toledo, and J. D. Rossi, Porous medium equation with absorption and a nonlinear boundary condition, Nonlinear Anal. 49 (2002), no. 4, 541-563.   DOI   ScienceOn
5 D. G. Aronson, The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985), 146, Lecture Notes in Math., 1224, Springer, Berlin, 1986.
6 R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: population models in disrupted environments. II, SIAM J. Math. Anal. 22 (1991), no. 4, 1043-1064.   DOI
7 Y. Chen, Semilinear blow-up in nonlocal reaction-diffusion systems with nonlinear memory, Nanjing Daxue Xuebao Shuxue Bannian Kan 23 (2006), no. 1, 121-128.
8 L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources, J. Comput. Appl. Math. 202 (2007), no. 2, 237-247.   DOI   ScienceOn
9 J. Filo, Diffusivity versus absorption through the boundary, J. Differential Equations 99 (1992), no. 2, 281-305.   DOI
10 J. Furter and M. Crinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65-80.   DOI
11 O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematics Monographs, Amer. Math. Soc., Providence, RI, 1968.
12 A. V. Lair and M. E. Oxley, A necessary and sufficient condition for global existence for a degenerate parabolic boundary value problem, J. Math. Anal. Appl. 221 (1998), no. 1, 338-348.   DOI   ScienceOn
13 F. Li, Global existence and blow-up of solutions to a nonlocal quasilinear degenerate parabolic system, Nonlinear Anal. 67 (2007), no. 5, 1387-1402.   DOI   ScienceOn
14 H. H. Lu and M. X. Wang, Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via nonlocal sources, J. Math. Anal. Appl. 333 (2007), no. 2, 984-1007.   DOI   ScienceOn
15 M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, 1937.
16 M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations 103 (1993), no. 1, 146-178.   DOI   ScienceOn
17 X. Wu and W. Gao, Global existence and blow-up of solutions to an evolution p-Laplace system coupled via nonlocal sources, J. Math. Anal. Appl. 358 (2009), no. 2, 229-237.   DOI   ScienceOn
18 J. Wang and W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms, J. Math. Anal. Appl. 331 (2007), no. 1, 481-498.   DOI   ScienceOn
19 M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 24 (1993), no. 6, 1515-1521.   DOI   ScienceOn
20 S. Wang, Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions, J. Differential Equations 182 (2002), no. 2, 431-469.   DOI   ScienceOn
21 Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001.
22 S. N. Zheng and H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, Appl. Math. Comput. 180 (2006), no. 1, 295-308.   DOI   ScienceOn
23 J. Zhou and C. Mu, Blow-up for a non-newtonian polytropic filtration system with nonlinear nonlocal source, Commun. Korean Math. Soc. 23 (2008), no. 4, 529-540.   과학기술학회마을   DOI   ScienceOn