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LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF

SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM

WITH NONLINEAR MEMORY AND NONLINEAR

BOUNDARY CONDITIONS

Jian Wang, Meng-long Su, and Zhong-Bo Fang

Abstract. This paper deals with the behavior of positive solutions to
the following nonlocal polytropic filtration system
{

ut=(|(um1 )x|p1−1(um1 )x)x+ul11
∫ a

0
vl12 (ξ, t)dξ,(x, t) in [0, a]×(0, T ),

vt=(|(vm2 )x|p2−1(vm2 )x)x+vl22
∫ a

0
ul21 (ξ, t)dξ,(x, t) in [0, a]×(0, T )

with nonlinear boundary conditions ux|x=0 = 0, ux|x=a = uq11vq12 |x=a,
vx|x=0 = 0, vx|x=a = uq21vq22 |x=a and the initial data (u0, v0), where
m1,m2 ≥ 1, p1, p2 > 1, l11, l12, l21, l22, q11, q12, q21, q22 > 0. Under
appropriate hypotheses, the authors establish local theory of the solu-
tions by a regularization method and prove that the solution either exists
globally or blows up in finite time by using a comparison principle.

1. Introduction and main results

In this paper, we consider the following system:
(1.1)














































ut = (|(um1)x|
p1−1(um1)x)x + ul11

∫ a

0

vl12(ξ, t)dξ, (x, t) ∈ [0, a]× (0, T ),

vt = (|(vm2)x|
p2−1(vm2)x)x + vl22

∫ a

0

ul21(ξ, t)dξ, (x, t) ∈ [0, a]× (0, T ),

ux|x=0 = 0, ux|x=a = uq11vq12 |x=a, t ∈ (0, T ),

vx|x=0 = 0, vx|x=a = uq21vq22 |x=a, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, a],
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where T > 0, l11, l12, l21, l22, q11, q12, q21, q22 > 0, m1,m2 ≥ 1, p1, p2 > 1.
Let QT = [0, a] × (0, T ], T > 0, z+ = max{z, 0}. Throughout this paper we
assume that:

(i) u0(x), v0(x) ∈ C2+α([0, a]) for some 0 < α < 1, u0(x), v0(x) ≥ δ > 0;
(ii) (|um1

0x |p1−1um1
0x )x, (|v

m2
0x |p2−1vm2

0x )x ∈ L2([0, a]) on [0, a];
(iii) u0(x), v0(x) satisfy the compatibility conditions:

(A)
u0x(0) = 0, u0x(a) = uq110 vq120 (a),

v0x(0) = 0, v0x(a) = uq210 vq220 (a).

Problems of this form arise in mathematical models such as modeling gas or
fluid flow through a porous medium and completely turbulent flow and for
the spread of certain biological populations (see [3, 5, 15] and the references
therein). In the non-Newtonian fluids theory, the pair (p1, p2) is a character-
istic quantity of medium. Media with (p1, p2) > (2, 2), which means p1 > 2,
p2 > 2, are called dilatant fluids and those with (p1, p2) < (2, 2) are called
pseudo-plastics. If (p1, p2) = (2, 2), they are called Newtonian fluids. When
(p1, p2) = (2, 2) and (m1,m2) = (1, 1) the connection with the flow in porous
media is by now classical. When (m1,m2) ≥ (1, 1) and (p1, p2) > (2, 2), the sys-
tem models the non-stationary, polytropic flow of a fluid in a porous medium
whose tangential stress has a power dependence on the velocity of the dis-
placement under polytropic conditions (non-Newtonian elastic filtration); it
has been intensively studied (see [16, 17, 21] and references therein). The non-
local growth terms present a more realistic model of a population [6, 10, 14, 18].
The nonlinear boundary conditions in (1.1) can be physically interpreted as a
nonlinear radiation law (see [9]).

In recent years, many authors have studied the global existence or blow-up
of solutions to some parabolic problems with nonlinear boundary conditions.
In [1], G. Acosta and J. D. Rossi considered the global existence of solutions
to the following problem:







ut = ∆u+ f(u, v), vt = ∆v + g(u, v), in Ω× (0, T ),
∂u
∂η = h(u, v), ∂v

∂η = s(u, v), on ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

which can be viewed as a heat conduction problem with nonlinear diffusivity,
source and a nonlinear radiation law coupling on the boundary of the material
body.

In [7], Y. Chen considered the following semilinear parabolic systems with
nonlocal source:

ut = ∆u+

∫

Ω

vp(ξ, t)dξ, vt = ∆v +

∫

Ω

up(ξ, t)dξ, (x, t) ∈ Ω× (0, T ),

∂u

∂ν
=
∂v

∂ν
= 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.
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She obtained some blowup criteria and a blowup rate.
Recently, in [8], L. Du studied the following problem

ut = ∆um+up1

∫

Ω

vq1 (ξ, t)dξ, vt = ∆vn+vp2

∫

Ω

uq2(ξ, t)dξ, (x, t) ∈ Ω× (0, T ),

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

And he also get the criteria for solution exists globally or blows up in finite
time. Moreover, if p1 = 0 or p1 > m; p2 = 0 or p2 > n; q1 > n, q2 > m
and satisfy q2 > p1 − 1, q1 > p2 − 1, he also get the blow-up rates under the
monotone assumption for initial data.

In [20], X. Wu investigate the behavior of positive solutions to the follow-
ing system of evolution p-Laplace equations coupled via nonlocal sources with
nonlinear boundary conditions and the initial data

(1.2)

ut = (|ux|
p1−1ux)x +

∫ a

0

vm1(ξ, t)dξ, (x, t) in [0, a]× (0, T ),

vt = (|vx|
p2−1vx)x +

∫ a

0

um2(ξ, t)dξ, (x, t) in [0, a]× (0, T )

ux|x=0 = 0, ux|x=a = uq11vq12 |x=a, t ∈ (0, T ),
vx|x=0 = 0, vx|x=a = uq21vq22 |x=a, t ∈ (0, T ),
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, a].

Under appropriate hypotheses, the authors first prove a local existence result
by a regularization method. Then the authors discuss the global existence
and blow-up of positive weak solutions by using a comparison principle. And
F. Li [13] considered the problem (1.2) with homogeneous Dirichlet boundary
conditions and obtained some necessary and sufficient conditions on the global
existence of the positive solutions.

In [19], the following problem has been intensively studied by S. Wang:

(1.3)

(|u|r1−1u)t = (|ux|
p1−1ux)x, 0 < x < 1, t > 0,

(|v|r2−1v)t = (|vx|
p2−1vx)x, 0 < x < 1, t > 0,

ux|x=0 = 0, ux|x=1 = λul11vl12 |x=1, t > 0,

vx|x=0 = 0, vx|x=1 = λul21vl22 |x=1, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ 1.

The author proved a local existence result and obtained some necessary and
sufficient conditions on the global existence of all positive (weak) solutions.

Recently, J. Zhou, in [23], considered problem (1.1) with homogeneous Diri-
chlet boundary conditions and obtained some necessary and sufficient condi-
tions on the global existence of the positive solutions. More results for parabolic
equations with nonlinear boundary conditions can be found in [4, 12, 22] and
the references therein.
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However, to the author’s best knowledge, there is little literature on the
study of the global existence and blow-up properties for the system (1.1). This
paper extends their results of the references cited above essentially to non-
Newton polytropic filtration system (1.1). Therefore, this paper is also an
extension of the above results. Due to the nonlinear diffusion terms and dou-
bly degeneration for u = 0, |∇u| = 0 or v = 0, |∇v| = 0, we have some new
difficulties to be overcome. Noticing that the system (1.1) includes the New-
tonian filtration system ((p1, p2) = (2, 2)) and the non-Newtonian filtration
system ((m1,m2) = (1, 1)) formally, so the method for it should be synthetic.
In fact, we can use the methods for the above two systems to deal with it.
First under appropriate hypotheses, we established local theory of the solu-
tions. The method we used is the so-called ‘test function method’ and some
modifications and adaptations of ideas from [19] and [20]. Our proof is based
on argument by the different method of regularization, which involves con-
sidering the regularized problem firstly and making a priori estimates for the
nonnegative approximate solutions by carefully choosing special test functions
and a scaling argument, then obtaining the results based on the estimates by a
standard limiting process. Then we investigate the global existence or blow-up
properties of weak solutions to the problem (1.1) depending on the relations
among the parametersm1,m2, p1, p2, l11, l12, l21, l22, q12, q12, q21, q22. Note that
(1.1) has nonlinear and nonlocal sources ul11

∫ a

0
vl12(ξ, t)dξ, vl22

∫ a

0
ul21(ξ, t)dξ

and nonlinear boundary sources uq11vq12 , uq21vq22 , which make the behavior of
the solution different from that for that of homogeneous Neumann or Dirichlet
boundary value problems. However, it is difficult to use the same methods as
that in [23] to get the desired result. To overcome these difficulties, we used
some modification of the technique in [19] so that we can handle the nonlinear-
ities. Roughly speaking, the proof consists of several steps. First, we establish
the comparison principle for system (1.1) by choosing suitable test function
and Gronwall’s inequality. Then, we use some functions to control the nonlocal
sources and prove, with the technique in [19], that the control for the nonlocal
sources is suitable. Finally we also need to consider the effect of these nonlinear
terms in the proof of the global existence (blow-up) property of solutions to
(1.1). In this paper we will give some necessary and sufficient conditions on
the global existence of positive weak solutions to (1.1). These results extend
the results of [19, 20] to the general case with nonlocal sources and nonlinear
boundary sources.

The main results of this paper are the following theorems:

Theorem 1.1. All positive weak solutions of (1.1) exist globally if and only if

l11 ≤ 1, l22 ≤ 1, q11 ≤
1

p1
+ 1−m1, q22 ≤

1

p2
+ 1−m2,

l12l21 ≤ (1− l11)(1− l22), l12q21 ≤ [1− l11][
1

p2
+ 1−m2 − q22],
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l21q12 ≤ [
1

p1
+ 1−m1 − q11][1− l22] and

q12q21 ≤ (
1

p1
+ 1−m1 − q11)(

1

p2
+ 1−m2 − q22).

Note. The system of inequalities in Theorem 1.1 is very large, so we give an
example. Let p1 = p2 = 3

2 , m1 = m2 = 7
6 , q11 = q22 = 1

3 , l11 = l22 = 1
2 ,

l12 = l21 = 1
4 , q21 = q12 = 1

8 . Then we can obviously prove that the above
inequalities hold.

Theorem 1.2. All positive weak solutions of (1.1) blow up in finite time if one

of the following inequalities holds:
(B)

(i) l11 > 1 or l22 > 1 or q11 >
1

p1
+ 1−m1 or q22 >

1

p2
+ 1−m2;

(ii) q11 ≤
1

p1
+ 1−m1, q22 ≤

1

p2
+ 1−m2 and

q12q21 > (
1

p1
+ 1−m1 − q11)(

1

p2
+ 1−m2 − q22);

(iii) l11 ≤ 1, l22 ≤ 1 and l12l21 > (1− l11)(1 − l22);

(iv) l11 ≤ 1, q22 ≤
1

p2
+ 1−m2 and l12q21 > [1− l11][

1

p2
+ 1−m2 − q22];

(v) l22 ≤ 1, q11 ≤
1

p1
+ 1−m1 and l21q12 > [

1

p1
+ 1−m1 − q11][1− l22].

The outline of this paper is as follows: In the next section, we will give
the proof of a weak comparison principle and a simple fact without proof. In
Section 3, we will prove the local existence results by a regularization method.
In Section 4, we will discuss the global existence and blow-up property of
solutions to (1.1) by constructing various upper and lower solutions.

2. Preliminaries

In this paper, we use the following definition of the weak solutions.

Definition 2.1. A pair of functions (u, v) ∈ C(QT )×C(QT ) is called a super-
solution (subsolution) of problem (1.1) in QT if all of the following hold:

(i) u, v ∈ L∞(0, T ;W 1,∞(0, a)) ∩W 1,2(0, T ;L2(0, a)), (u(x, 0), v(x, 0)) ≥
(≤)(u0(x), v0(x));

(ii) For any nonnegative functions ϕ1(x, t), ϕ2(x, t) ∈ L1(0, T ;W 1,2(0, a))∩
L2(QT ),

∫∫

QT

ut(x, t)ϕ1(x, t)dxdt+

∫∫

QT

|(um1)x(x, t)|
p1−1(um1)x(x, t)ϕ1x(x, t)dxdt

(2.1)
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≥ (≤)

∫ T

0

uq11vq12(a, t)ϕ1(a, t)dt+

∫∫

QT

(ul11
∫ a

0

vl12(ξ, t)dξ)ϕ1(x, t)dxdt,

∫∫

QT

vt(x, t)ϕ2(x, t)dxdt+

∫∫

QT

|(vm2)x(x, t)|
p2−1(vm2)x(x, t)ϕ2x(x, t)dxdt

(2.2)

≥ (≤)

∫ T

0

uq21vq22(a, t)ϕ2(a, t)dt+

∫∫

QT

(vl22
∫ a

0

ul21(ξ, t)dξ)ϕ2(x, t)dxdt.

(u, v) is called a weak solution of (1.1) if it is both a supersolution and a
subsolution.

Definition 2.2. We say the solution (u, v) of the problem (1.1) blows up in
finite time if there exists a positive constant T < +∞ such that

lim
t→T−

sup
x∈[0,a]

(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞) = +∞.

We say the solution (u, v) exists globally if

sup
t∈(0,+∞)

(‖u(·, t)‖L∞ + ‖v(·, t)‖L∞) < +∞.

We first give a weak comparison principle.

Proposition 2.1 (Comparison principle). Let (u, v) be a weak solution of

(1.1), (u, v) and (u, v) a subsolution and a supersolution of (1.1) in QT , respec-

tively, with nonlinear boundary flux λuq11vq12 , λuq21vq22 , λuq11vq12 , λuq21vq22

and nonlocal terms ul11
∫ a

0 v
l12(ξ, t)dξ, vl21

∫ a

0 u
l22(ξ, t)dξ, ul11

∫ a

0 v
l12(ξ, t)dξ,

vl21
∫ a

0 u
l22(ξ, t)dξ where 0 < λ < 1 < λ. Then (u, v) ≤ (u, v) ≤ (u, v) in QT ,

if (u0, v0) ≤ (u0, v0) and there exists a positive constant δ, such that either

(2.3)

∫ a

0

vl12dx ≥ δ,

∫ a

0

ul22dx ≥ δ, u, v ≥ δ

or

(2.4)

∫ a

0

vl12dx ≥ δ,

∫ a

0

ul22dx ≥ δ, u, v ≥ δ

hold.

Proof. Similarly to the proof of Proposition 2.1 in [19]. For small δ > 0, let

Hδ(z) = min(1,max(
z

δ
, 0))
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and set ϕ1 = Hδ(u
m1 − um1), then according to the definitions of solution and

lower solution we have
(2.5)

∫∫

Qt

{(u− u)tHδ(u
m1 − um1)

+ (Hδ(u
m1 − um1))x[|(u

m1)x|
p1−1(um1)x − |(um1)x|

p1−1(um1)x]}dxdt

≤

∫ t

0

Hδ(u
m1 − um1)[(λuq11vq12)p1 − (λuq21vq22)p2 ]|x=adt

+

∫∫

Qt

Hδ(u
m1 − um1)

(

ul11
∫ a

0

vl12 − ul11
∫ a

0

vl12
)

dxdt.

Define

χ(x) =

{

1, x ≥ 0,
0, x < 0.

As in [2], by letting δ → 0, noticing

∫∫

Qt

(Hδ(u
m1 − um1))x[|(u

m1)x|
p1−1(um1)x − |(um1)x|

p1−1(um1)x]dxdt ≥ 0

and χ[um1 > um1 ] = χ[u > u], we get

(2.6)

∫∫

Qt

(u − u)tχ[u > u]dxdt

≤

∫ t

0

f1(x, t)χ[u > u]|x=adt

+

∫∫

Qt

χ[u > u]λul11
(
∫ a

0

G(x, t)(v(x, t)− v(x, t))dx

)

dxdt

+

∫∫

Qt

χ[u > u]Φ(x, t)(u − u)(

∫ a

0

vl12(ξ, t)dξ)dxdt,

where

f1(x, t) = vp1q12 [(λuq11)p1 − (uq11)p1 ] + λp1up1q11p1q12θ
p1q12−1
1 (v − v),

G(x, t) =

∫ 1

0

l12[ξv + (1 − ξ)v]l12−1dξ, Φ(x, t) =

∫ 1

0

l11[ξu+ (1− ξ)u]l11−1dξ

for some θ1 > 0 lying between v(a, t) and v(a, t).
Since (0, 0) < (δ, δ) ≤ (u(x, 0), v(x, 0)) ≤ (u(x, 0), v(x, 0)), 0 ≤ x ≤ a, λ < 1,

by the continuity of u, v, u, v, there exists a time τ > 0 such that f1(a, t) ≤ 0
for all t ∈ [0, τ ]. Since (u, v) and (u, v) are bounded in Qt, it follows from
m1,m2, p1, p2 > 1, l12, l11 ≥ 1 that G(x, t),Φ(x, t) are bounded nonnegative
functions. Now, if l12, l11 < 1, we have G(x, t) ≤ δl12−1,Φ(x, t) ≤ δl11−1 by the
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assumptions (2.3) or (2.4). It follows that

(2.7)

∫ a

0

(u− u)+dx

≤ c1

∫∫

Qt

(u− u)+dxdt+ c2

∫∫

Qt

G(x, t)[v(x, t) − v(x, t)]+dxdt,

where ω+ = max{ω, 0} and c1, c2 are bounded constants. Similarly, we can
prove

(2.8)

∫ a

0

(v − v)+dx

≤ c3

∫∫

Qt

(v − v)+dxdt+ c4

∫∫

Qt

F (x, t)[u(x, t)− u(x, t)]+dxdt,

where c3, c4 are bounded constants, and

F (x, t) =

∫ 1

0

l21[ξu + (1− ξ)u]l21−1dξ

is a bounded nonnegative function. Now (2.7), (2.8) combined with the Gron-
wall’s inequality show that (u, v) ≤ (u, v) on Qτ .

Define τ∗ = sup{τ ∈ [0, T ] : (u(x, t), v(x, t)) ≤ (u(x, t), v(x, t)) for all (x, t) ∈
Qτ}. We claim that τ∗ = T . Otherwise, from the continuity of u, v, u, v there
exists an ε > 0, such that τ∗ + ε < T , f1(a, t), g1(a, t) ≤ 0 for all t ∈ [0, τ∗ + ε].
By (2.7), (2.8) and Gronwall’s inequality we have (u, v) ≤ (u, v) on Qτ∗+ε,

which contradicts the definition of τ∗. Hence, (u, v) ≤ (u, v) on QT .
Similarly, we can prove that (u, v) ≤ (u, v) on QT . This completes the proof

of Proposition 2.1. �

At the end of this section, we describe a simple fact without proof.

Fact 2.1. Suppose that positive constants Ai, Bi, Ci, Di, i = 1, 2 satisfy A1/C1

≤ D1/B1, A2/C2 ≤ D2/B2 and that either A2/C2 ∈ [A1/C1, D1/B1] or

A1/C1 ∈ [A2/C2, D2/B2] holds. Then there exist positive constants K and

L such that

max(A1/C1, A2/C2) ≤ K/L ≤ min(D1/B1, D2/B2).

3. Local existence

In this section, we study local existence of solutions to problem (1.1).

Theorem 3.1. Assume (A). Then there exists a time T > 0 such that (1.1)
has a unique weak solution (u, v) on QT satisfying (u, v) ≥ (δ, δ) > (0, 0) for

some positive constant δ.
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The proof of this theorem basically follows line by line the proof of Theorem
1 in [19]. However the nonlocal term causes some difficulties, we will give the
outline of the proof by pointing out the differences. Consider the following
approximating problems for problem (1.1):
(3.1)


































uεt = [(|(um1
ε )x|

2 + ε)
p1−1

2 Φ1(uε)uεx]x + F1(uε, vε), (x, t) ∈ (0, a)× (0, T ),

vεt = [(|(vm2
ε )x|

2 + ε)
p2−1

2 Φ2(vε)vεx]x + F2(uε, vε), (x, t) ∈ (0, a)× (0, T ),

uεx|x=0 = 0, uεx|x=a = G1(uε(a, t), vε(a, t)), t ∈ (0, T ),

vεx|x=0 = 0, vεx|x=a = G2(uε(a, t), vε(a, t)), t ∈ (0, T ),

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ [0, a].

We need to control the nonlocal term by applying the technique developed in
[20]. Choose the bounded functions Φi(w), Fi(w, z), Gi(w, z) ∈ C∞(R) such
that: Φi(w) = miw

mi−1, F1(w, z) = wl11
∫ a

0
zl12dξ, F2(w, z) = zl22

∫ a

0
wl21dξ,

G1(w, z) = wq11zq12 , G2(w, z) = wq21zq22 for δ ≤ w, z ≤ M + 1, where M =
‖u0(x)‖∞+‖v0(x)‖∞. And we assume that there exist positive constants l and
L such that

0 < l ≤ Φ1(w),Φ2(w), F1(w, z), F2(w, z), G1(w, z), G2(w, z) ≤ L < +∞,

∂G1(w, z)

∂z
,
∂G2(w, z)

∂w
≥ 0

for any w, z ∈ R.
First, we claim that there exist a small constant τ1 > 0 and a positive

constant C independent of ε such that

‖(um1
ε )x‖∞, ‖(v

m2
ε )x‖∞ ≤ C on Qτ1 .

Proof. Choose bounded functions: aiε(z) ∈ C∞(R), 0 < ρε ≤ a′iε(z) ≤ ρ−1
ε on

R for some 0 < ρε < 1 and

aiε(z) = (|z|2 + ε)
pi−1

2 z for |z| ≤ K + L+ 1, i = 1, 2,

where K = ‖(um1
0 )x(x)‖∞ + ‖(vm2

0 )x(x)‖∞. Then consider the following prob-
lem:
(3.2)






























uεt = [a1ε((u
m1
ε )x)]x + F1(uε, vε), (x, t) ∈ [0, a]× (0, T ),

vεt = [a2ε((v
m2
ε )x)]x + F2(uε, vε), (x, t) ∈ [0, a]× (0, T ),

uεx|x=0 = 0, uεx|x=a = G1(uε(a, t), vε(a, t)), t ∈ (0, T ),

vεx|x=0 = 0, vεx|x=a = G2(uε(a, t), vε(a, t)), t ∈ (0, T ),

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ [0, a].

For (3.2), standard parabolic theory (see [11]) shows that there is a pair of
unique smooth solutions (uε, vε) in the class H2+β,1+β/2(QT ) for some β ∈
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(0, 1). Obviously, comparison principle holds for (3.2). Therefore,

uε(x, t), vε(x, t) ≥ δ > 0, uεt(x, t), vεt(x, t) ≥ 0, (x, t) ∈ QT

and for some constant c ∈ R,

(3.3) 0 < c ≤ (F1)
′

1(w, z), (F1)
′

2(w, z), (F2)
′

1(w, z), (F2)
′

2(w, z) ≤ c−1.

In fact, let w = (um1
ε )x, z = (vm2

ε )x, then (w, z) satisfies










































































Φ1(uε)wt − Φ2
1(uε)a

′

1ε((u
m1
ε )x)wxx − Φ2

1(uε)a
′′

1ε((u
m1
ε )x)(wx)

2

− [Φ′

1(uε)uεt +Φ1(uε)(F1)
′

1(uε, vε)]w − Φ2
1(uε)(F1)

′

2(uε, vε)vεx = 0

((x, t) ∈ [0, a]× (0, T )),

Φ2(vε)zt − Φ2
2(vε)a

′

2ε((v
m2
ε )x)zxx − Φ2

2(vε)a
′′

2ε((v
m2
ε )x)(zx)

2

− [Φ′

2(vε)vεt +Φ2(vε)(F2)
′

2(uε, vε)]w − Φ2
2(vε)(F2)

′

1(uε, vε)uεx = 0

((x, t) ∈ [0, a]× (0, T )),

w|x=0 = 0, w|x=a = G1(uε, vε) (t ∈ (0, T )),

z|x=0 = 0, z|x=a = G2(uε, vε) (t ∈ (0, T )),

w(x, 0) = (um1
0 )x(x), z(x, 0) = (vm2

0 )x(x) (x ∈ [0, a]).

Similarly to the proof of Proposition 3.1 in [19], the maximum principle yields
that there exists a small constant τ1 > 0 such that

‖w‖∞ ≤ max{‖(um1
0 )x‖∞, ‖(v

m2
0 )x‖∞, L},

‖z‖∞ ≤ max{‖(um1
0 )x‖∞, ‖(v

m2
0 )x‖∞, L}.

Therefore we have

‖(um1
ε )x‖∞, ‖(v

m2
ε )x‖∞ ≤ K + L+ 1 on Qτ1 .

Thus (uε, vε) is a solution of (3.1) in Qτ1 . Setting C = K +L+1, we draw our
conclusion. �

Next, we prove the following energy estimates.

Proposition 3.2. There exists a τ2 ∈ (0, T ) such that

uε(x, t), vε(x, t) ≤M + 1 on Qτ2 .

Proof. We may assume that T ∈ [0, 1). Let h ≥ M . Multiplying (3.1) by
(uε − h)+ and noting that 0 < l ≤ G1, F1 ≤ L, it is easy to see that

∫ a

0

(uε(·, t)− h)2+dx+

∫∫

QT

|uεx|
p1−1[(uε − h)2+]xdxdt

≤ c

∫ T

0

(uε − h)2+|x=adt+ c

∫∫

QT

(uε − h)2+dxdt

for some positive constant c independent of ε. Then similarly to the proof of
Proposition 3.1 in [19], there exists a τ2 > 0, independent of ε, such that

uε ≤M + 1 on Qτ2 .
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Similarly, we have

vε ≤M + 1 on Qτ2 .

This completes the proof of Proposition 3.2. �

Proposition 3.3. There exists a constant C > 0, independent of ε, such that
∫∫

QT

(u2εt + v2εt)dxdt ≤ C < +∞,

where T = min{τ1, τ2}.

Proof. Differentiate the first equation of (3.1) with respect to t and multiply
both sides of the equation by uεt, integrate over QT to get

1

2

∫ a

0

u2εt(x, t)dx+

∫∫

QT

((um1
ε )2x + ε)

p1−1
2 −1[p1(u

m1
ε )2x + ε]mum1−1

ε u2εxtdxdt

=
1

2

∫ a

0

u2εt(x, 0)dx

−

∫∫

QT

((um1
ε )2x + ε)

p1−1

2 −1[p1(u
m1
ε )2x + ε]mum1−1

ε uεtxuεxuεtdxdt

+

∫ T

0

[((um1
ε )2x + ε)

p1−1
2 (um1

ε )x]tuεt(a, t)dt

+

∫∫

QT

[(F1)
′

1(uε, vε)u
2
εt + (F1)

′

2(uε, vε)vεtuεt]dxdt.

Using Hölder’s inequality, we have

∫ a

0

u2εt(x, t)dx+

∫∫

QT

((um1
ε )2x + ε)

p1−1
2 −1[p1(u

m1
ε )2x + ε]mum1−1

ε u2εxtdxdt

(3.4)

= m1(m1 − 1)2
∫∫

QT

((um1
ε )2x + ε)

p1−1
2 −1[p1(u

m1
ε )2x + ε]um1−3

ε [uεxuεt]
2dxdt

+

∫ a

0

u2εt(x, 0)dx+ 2

∫ T

0

[((um1
ε )2x + ε)

p1−1

2 (um1
ε )x]tuεt(a, t)dt

+ 2

∫∫

QT

[(F1)
′

1(uε, vε)u
2
εt + (F1)

′

2(uε, vε)vεtuεt]dxdt.

Using uε(x, t), vε(x, t) ≥ δ and the boundary conditions in (3.1), we know that
there exists x0 ∈ [0, a) such that

uεx(x, t) ≥
δq11q12

2
, vεx(x, t) ≥

δq21q22

2
, (x, t) ∈ [x0, a]× [0, T ].

Hence, we have
(3.5)
∫∫

QT

((um1
ε )2x + ε)

p1−1
2 −1[p1(u

m1
ε )2x + ε]mum1−1

ε u2εxtdxdt ≥ c

∫ T

0

∫ a

x0

u2εxtdxdt
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for some positive constant c independent of ε.
Then, (3.4), together with (3.5), gives

∫ a

0

u2εt(x, t)dx+ c

∫ T

0

∫ a

x0

u2εxtdxdt(3.6)

= c

∫∫

QT

(uεt)
2dxdt+

∫ a

0

u2εt(x, 0)dx+ c

∫ T

0

[u2εt + v2εt](a, t)dt

+ 2

∫∫

QT

[(F1)
′

1(uε, vε)u
2
εt + (F1)

′

2(uε, vε)vεtuεt]dxdt

with the help of the boundary conditions and Young’s inequality.
Similarly, we have

∫ a

0

v2εt(x, t)dx+ c

∫ T

0

∫ a

x0

v2εxtdxdt(3.7)

= c

∫∫

QT

(vεt)
2dxdt+

∫ a

0

v2εt(x, 0)dx+ c

∫ T

0

[u2εt + v2εt](a, t)dt

+ 2

∫∫

QT

[(F2)
′

1(uε, vε)uεtvεt + (F2)
′

2(uε, vε)v
2
εt]dxdt.

Using Sobolev’s inequalities, we have

c

∫ T

0

[u2εt + v2εt](a, t)dt

≤ τ1

∫ T

0

∫ a

x0

(u2εxt + v2εxt)dxdt+ c(τ1)

∫ T

0

∫ a

x0

(u2εt + v2εt)dxdt(3.8)

for any positive constant τ1 independent of ε. Noticing (3.3) and using Young’s
inequality again, we obtain

∫∫

QT

[(F1)
′

1u
2
εt + (F1)

′

2vεtuεt]dxdt ≤ c

∫∫

QT

(u2εt + v2εt)dxdt,

∫∫

QT

[(F2)
′

2v
2
εt + (F2)

′

1uεtvεt]dxdt ≤ c

∫∫

QT

(u2εt + v2εt)dxdt.(3.9)

Combing (3.6)-(3.9), we have
∫ a

0

(u2εt + v2εt)(x, t)dx ≤

∫ a

0

(u2εt + v2εt)(x, 0)dx+ C

∫ ∫

QT

(u2εt + v2εt)dxdt.

By the Gronwall’s Lemma, we obtain the desired results.
Therefore, by compactness arguments and the standard monotonicity argu-

ment, it follows that (up to extraction of a subsequence):

(uε, vε) → (u, v) a.e. for (x, t) ∈ QT ,

(uεx, vεx) → (ux, vx) weakly star in L∞(QT ),

(uεt, vεt) → (ut, vt) weakly in L2(QT ),
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a1ε((u
m1
ε )x) → w1 weakly star in L∞(QT ),

a2ε((v
m2
ε )x) → w2 weakly star in L∞(QT ).

We show that w1 = |(um1)x|
p1−1(um1)x, w2 = |(vm2)x|

p2−1(vm2)x.
From Proposition 3.2, we have

lim
n→∞

∫ ∫

QT

ψ|(um1
ε )x|

p1−1(um1
ε )x(u

m1
ε − um1)xdxdt = 0,

where ψ ∈ C1,1
0 (QT ), ψ ≥ 0.

Then similarly to the proof of Theorem 1 in [17], we have
∫ ∫

QT

ψ(w1 − |(um1)x|
p1−1(um1)x)dxdt = 0.

Thus w1 = |(um1)x|
p1−1(um1)x. Similarly, w2 = |(vm2)x|

p2−1(vm2)x.
The proof of Theorem 3.1 is completed by a standard limiting process.
The uniqueness of the solution is obvious. In fact, assume that (u1, v1),

(u2, v2) are two nonnegative solutions of (1.1), using Proposition 2.1 repeatedly,
we can get u1 = u2, v1 = v2 a.e. in QT . �

4. Proof of the theorems

In this section we will discuss the global existence of solutions to problem
(1.1).

We will divide the proof of Theorem 1.1 and Theorem 1.2 into six lemmas.
Throughout this section we denote

τi =
pi

pi + 1
, i = 1, 2,

and choose λ, λ satisfying λ > 1 > λ > 0.

Lemma 4.1. For l11 > 1 or l22 > 1 or q11 >
1
p1

+1−m1 or q22 >
1
p2

+1−m2,

the solution (u, v) of (1.1) blows up in finite time.

Proof. Without loss of generality, assume l11 > 1. Consider the single equation

zt = (|(zm1)x|
p1−1(zm1)x)x + aδl12zl11 , (x, t) ∈ [0, a]× (0, T ),

zx|x=0 = 0, zx|x=a = λδq12zq11 |x=a, t > 0,

z(x, 0) = u0(x), x ∈ [0, a].

We know from [18] that z blows up in finite time. Since v ≥ δ by the comparison
principle, thus (z, δ) is a subsolution of (1.1) and (u, v) blows up in finite time
if l11 > 1. �

Lemma 4.2. For q11 ≤ 1
p1

+ 1 −m1, q22 ≤ 1
p2

+ 1 −m2 and q12q21 > ( 1
p1

+

1−m1 − q11)(
1
p2

+ 1−m2 − q22), the solution (u, v) of (1.1) blows up in finite

time.
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Proof. Notice that the solutions of (1.3) are just subsolutions of (1.1). The
blow-up result for the solutions of (1.3) (see [19]) yields the blow-up of solutions
to (1.1). �

Lemma 4.3. For l11 ≤ 1, l22 ≤ 1 and l12l21 > (1 − l11)(1 − l22), the solution

(u, v) of (1.1) blows up in finite time.

Proof. We choose ki > 0, i = 1, 2 such that

−k1l11 − k2l12 + k1 + 1 ≤ 0,

−k1l21 − k2l22 + k2 + 1 ≤ 0.

Denote wi = (c− bt)−ki and

c = max{δ
−

1
k1 , δ

−
1
k2 }, b = min{

ac−k1l11−k2l12+k1+1

k1
,
ac−k1l21−k2l22+k2+1

k2
}.

A routine calculation yields:

w1t = k1b(c− bt)−k1−1 ≤ a(c− bt)−k1l11−k2l12 = wl11
1

∫ a

0

wl12
2 (ξ, t)dξ.

w1(x, 0) ≤ c−k1 ≤ minu0(x) ≤ u0(x).

Similarly, we have

w2t ≤ wl22
2

∫ a

0

wl21
1 (ξ, t)dξ, w2(x, 0) ≤ v0(x).

Hence, by the comparison principle we have that (u, v) ≥ (w1, w2). Therefore,
(u, v) blows up in finite time. The proof is completed. �

Lemma 4.4. For l11 ≤ 1, q22 ≤ 1
p2

+ 1 −m2 and l12q21 > [1 − l11][
1
p2

+ 1 −

m2 − q22], the solution (u, v) of (1.1) blows up in finite time.

Proof. It is easy to prove that by Fact 2.1 there exist positive constants k1, k2 >
0, β1 > m1, β2 > m2 satisfying

k1
β1(1 − l11)

m1
+ 1− k2

β2l12
m2

= 0,

k2β2p2 − k2p2 − k2
β2
m2

− 1 ≥ 0,

k1
β1
m1

− k1 − k1
β1q11
m1

− k2
β2
m2

q12 ≤ 0,

k2
β2
m2

− k2 − k2
β2q22
m2

− k1
β1q21
m1

≤ 0.

Set

w1 = [d(1 + x
1
τ1 ) + (c− bt)−k1 ]β1/m1 = [S1]

β1/m1 ,

w2 = [d(1 + x
1
τ2 ) + (c− bt)−k2 ]β2/m2 = [S2]

β2/m2 ,
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where b, c, d > 0 satisfy

c ≥ max{2
1
k1 δ

−
m1

k1β1 , 2
1
k2 δ

−
m2

k2β2 },

d ≤ min{
1

1 + a
1
τ1

c−k1 ,
1

1 + a
1
τ2

c−k2 ,

λ(β1/m1
1

τ1
a

1
p1 2β1/m1−1)−1ck1β1/m1−k1−k1β1q11/m1−k2β2q12/m2 ,

λ(
β2
m2

1

τ2
a

1
p2 2

β2
m2

−1)−1ck2β2/m2−k2−k2β2q22/m2−k1β1q21/m1},

b ≤ min{λa(k1β1/m1)
−121−β1,

(
β2
m2

d
1

τ2
)p2(k2

β2
m2

2
β2
m2

−1)−1c−(k2β2p2−k2p2−k2
β2
m2

−1)}.

Computing directly, we obtain

w1t =
β1
m1

[S1]
β1
m1

−1
k1b(c− bt)−k1−1,

(wm1
1 )x = β1[S1]

β1−1d
1

τ1
x

1
m1p1 ,

(

(

(wm1
1 )x

)p1
)

x
+ wl11

1

∫ a

0

wl12
2 (ξ, t)dξ > [S1]

β1l11
m1

∫ a

0

[S2]
β2l12
m2 (ξ, t)dξ

≥ a(c− bt)−k1(
β1
m1

−1)−k1−1

≥
β1
m1

k1b2
β1
m1

−1(c− bt)−k1(
β1
m1

−1)−k1−1

= w1t

and

(

(

(wm2
2 )x

)p2
)

x
+ λ

∫ a

0

wn2
1 ≥ (β2d

1

τ2
)p2{[S2]

p2(β2−1)x}x

≥ (β2d
1

τ2
)p2 [S2]

p2(β2−1)

≥
β2
m2

k2b2
β2
m2

−1
(c− bt)

−k2(
β2
m2

−1)−k2−1

≥ w2t.

Then we have

(4.1)

w1t ≤
(

(

(wm1
1 )x

)p1
)

x
+ wl11

1

∫ a

0

wl12
2 (ξ, t)dξ,

w2t ≤
(

(

(wm2
2 )x

)p2
)

x
+ wl22

2

∫ a

0

wl21
1 (ξ, t)dξ.
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Noting that on the boundary

w1x(a, t) =
β1
m1

d
1

τ1
a

1
p1 [S1]

β1/m1−1 ≤
β1
m1

d
1

τ1
2β1/m1−1a

1
p1 (c− bt)−k1(β1/m1−1)

≤ λwq11
1 wq12

2 .

Similarly, we have

(4.2) w2x(a, t) ≤ λwq21
1 wq22

2 .

Under the assumptions of a, b, ki and βi, we have that for x ∈ [0, 1],

(4.3) w1(x, 0) ≤ (d(1 + a
1
τ1 ) + c−k1)β1/m1 ≤ δ ≤ u0(x),

(4.4) w2(x, 0) ≤ (d(1 + a
1
τ2 ) + c−k2)β2/m2 ≤ δ ≤ v0(x).

From (4.3)-(4.7) and the comparison principle, it follows that (u, v) ≥ (w1, w2).
This shows that (u, v) blows up in finite time. �

Lemma 4.5. For l22 ≤ 1, q11 ≤ 1
p1

+ 1 − m1 and l21q12 > [ 1
p1

+ 1 − m1 −

q11][1− l22], the solution (u, v) of (1.1) blows up in finite time.

Proof. The proof is similar to that of Lemma 4.4. �

Lemma 4.6. For l11 ≤ 1, l22 ≤ 1, q11 ≤ 1
p1

+ 1 − m1, q22 ≤ 1
p2

+ 1 − m2,

l12l21 ≤ (1 − l11)(1 − l22), l12q21 ≤ [1 − l11][
1
p2

+ 1 − m2 − q22], l21q12 ≤

[ 1
p1

+1−m1− q11][1− l22] and q12q21 ≤ ( 1
p1

+1−m1− q11)(
1
p2

+1−m2− q22),

the solution (u, v) of (1.1) exists globally.

Proof. First, it is easy to prove that by Fact 2.1 and (B) there exist l1, l2 > 1
such that

p1(
1
p1

+ 1−m1 − q11)

m1p1 − 1
l1 −

q12p2
m2p2 − 1

l2 ≥ 0,

p2(
1
p2

+ 1−m2 − q22)

m2p2 − 1
l2 −

q21p1
m1p1 − 1

l1 ≥ 0,

p1(1− l11)

m1p1 − 1
l1 −

p2l12
m2p2 − 1

l2 ≥ 0,

p2(1− l22)

m2p2 − 1
l2 −

n2p1
m1p1 − 1

l1 ≥ 0.(4.5)

Denote wi = [di(1 + x
1
τi ) + elli(t+1)]

pi
mipi−1 = [Si]

pi
mipi−1 , i = 1, 2, where li > 0

satisfy (4.5) and

d1 =
m1p1 − 1

p1
τ1λa

−
1
p1 2

p2q12
m2p2−1 , d2 =

m2p2 − 1

p2
τ2λa

−
1
p2 2

p1q21
m1p1−1 ,

l ≥ max{ln(d1(1 + a
1
τ1 ))/l1, ln(d2(1 + a

1
τ2 ))/l2,

(
p1

m1p1 − 1
)p1−1 4m

p1

1 d
p1

1

l1τ
p1

1

(1 +
d1p1a

1
τ1

(m1p1 − 1)τ1
),
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(
p2

m2p2 − 1
)p2−1 4m

p2

2 d
p2

2

l2τ
p2

2

(1 +
d2p2a

1
τ2

(m2p2 − 1)τ2
),

a
m1p1 − 1

p1l1
22−

p1(1−l11)l1
m1p1−1 +

p2l12l2
m2p2−1 , a

m2p2 − 1

p2l2
22−

p2(1−l22)l2
m2p2−1 +

p1l21l1
m1p1−1 ,

m1p1 − 1

l1p1
ln(max u0(x)),

m2p2 − 1

l2p2
ln(max v0(x))}.

By the choices of d1, d2 and l we have

(4.6) S1 ≤ 2ell1(t+1), S2 ≤ 2ell2(t+1).

By direct computations and (4.6) we have, for (x, t) ∈ (0, a)× [0,+∞),

w1t =
p1ll1

m1p1 − 1
S

p1
m1p1−1−1

1 ell1(t+1),

(wm1
1 )x =

m1p1d1
(m1p1 − 1)τ1

S
m1p1

m1p1−1−1

1 x
1
τ1

−1
,

(

(

(wm1
1 )x

)p1
)

x
=

( m1p1d1
(m1p1 − 1)τ1

)p1
([S1]

p1
m1p1−1 x)x

=
( m1p1d1
(m1p1 − 1)τ1

)p1
(

[S1]
p1

m1p1−1 +
p1d1

(m1p1 − 1)τ1
S

p1
m1p1−1−1

1 x
1
τ1

)

=
( m1p1d1
(m1p1 − 1)τ1

)p1
S

p1
m1p1−1−1

1

(

S1 +
p1d1

(m1p1 − 1)τ1
x

1
τ1

)

≤
( m1p1d1
(m1p1 − 1)τ1

)p1
S

p1
m1p1−1−1

1 2ell1(t+1)
(

1 +
p1d1

(m1p1 − 1)τ1

)

≤
1

2

p1ll1
m1p1 − 1

S
p1

m1p1−1−1

1 ell1(t+1)

=
1

2
w1t,

wl11
1

∫ a

0

wl12
2 (ξ, t)dξ = [S1]

p1l11
m1p1−1

∫ a

0

[S2]
p2l12

m2p2−1dξ

≤ [S1]
p1

m1p1−1−1
2aell1(t+1)[2el(t+1)]

−
p1(1−l11)l1

m1p1−1 +
p2l12l2
m2p2−1

≤
1

2

p1ll1
m1p1 − 1

S
p1

m1p1−1−1

1 ell1(t+1)

=
1

2
w1t,

i.e.,

(4.7) w1t ≥
(

(

(wm1
1 )x

)p1
)

x
+ wl11

1

∫ a

0

wl12
2 (ξ, t)dξ.

Similarly, we have

(4.8) w2t ≥
(

(

(wm2
2 )x

)p2
)

x
+ wl22

2

∫ a

0

wl21
1 (ξ, t)dξ.
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And

w1x|x=0 = 0, w2x|x=0 = 0,

w1x =
p1d1

(m1p1 − 1)τ1
S

p1
m1p1−1−1

1 a
1
τ1

−1

=
p1d1

(m1p1 − 1)τ1
a

1
τ1

−1
S

p1q11
m1p1−1

1 S
p2q12

m2p2−1

2 S
p1−p1q11
m1p1−1 −1

1 S
−

p2q12
m2p2−1

2

≥ wq11
1 wq12

2

p1d1a
1
τ1

−1

(m1p1 − 1)τ1
2−

p2q12
m2p2−1

exp{[
p1(1 − q11 −m1) + 1

m1p1 − 1
l1 −

p2q12
m2p2 − 1

l2]l(t+ 1)}

≥ wq11
1 wq12

2

p1d1
(m1p1 − 1)τ1

2
−

p2q12
m2p2−1 a

1
τ1

−1

= λwq11
1 wq12

2 , x = a, t > 0.(4.9)

Similarly, we have

(4.10) w2x ≥ λwq21
1 wq22

2 , x = a, t > 0.

For x ∈ [0, a], we have

w1(x, 0) = [d1(1 + x
1
τ1 ) + ell1 ]

p1
m1p1−1 ≥ ell1

p1
m1p1−1 ≥ max u0(x) ≥ u0(x),

(4.11)

w2(x, 0) = [d2(1 + x
1
τ2 ) + ell2 ]

p2
m2p2−1 ≥ ell2

p2
m2p2−1 ≥ max v0(x) ≥ v0(x).

(4.12)

From (4.7)-(4.11), we see that (w1, w2) is a supersolution of (1.1) with λ, which
means that solutions of (1.1) exists globally. �

Combining Lemmas 4.1-4.6, we see that Theorem 1.1 and Theorem 1.2 are
true.

Acknowledgements. The authors express their deepest thanks to the review-
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