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A NEW 3-PARAMETER CURVATURE CONDITION

PRESERVED BY RICCI FLOW

Xiang Gao

Abstract. In this paper, we firstly establish a family of curvature in-
variant conditions lying between the well-known 2-nonnegative curvature
operator and nonnegative curvature operator along the Ricci flow. These
conditions are defined by a set of inequalities involving the first four
eigenvalues of the curvature operator, which are named as 3-parameter
λ-nonnegative curvature conditions. Then a related rigidity property of
manifolds with 3-parameter λ-nonnegative curvature operators is also de-
rived. Based on these, we also obtain a strong maximum principle for the

3-parameter λ-nonnegativity along Ricci flow.

1. Introduction and main results

One of the basic problems in Riemannian geometry is to relate curvature
and topology. In [1], Böhm and Wilking prove that n-dimensional closed Rie-
mannian manifolds with 2-positive curvature operators are diffeomorphic to
spherical space forms, i.e., they admit metrics with constant positive sectional
curvature. One of the key points of their theorem is that the 2-positive or
2-nonnegative curvature condition is preserved by the Ricci flow.

Recall that the Riemannian curvature tensor is defined by

R (X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

for tangent vectors X,Y and Z. The Riemannian curvature operator, denoted
by R, is the symmetric bilinear form on ∧2TMn (or self-adjoint transformation
of ∧2TMn) defined by

R (X ∧ Y, Z ∧W ) = 〈R (X ∧ Y ) , Z ∧W 〉 = 2 〈R (X,Y )W,Z〉

for tangent vectors X , Y , Z and W .

Let {µα (R) | µ1 (R) ≤ · · · ≤ µN (R)}Nα=1, where N = n (n− 1)/2, denote
the eigenvalues of the curvature operator R. We have the following definition
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which was studied by Chen in dimension 4 [2] and mentioned in the work of
Micallef and Moore [7]:

Definition 1.1 (2-positive curvature operator). A Riemannian manifold
(Mn, g) has 2-positive curvature operator if

(1) µα (R) + µβ (R) > 0

for arbitrary α 6= β.

Remark 1. The 2-nonnegative curvature operator is defined in the obvious way
with ≥ replacing > in (1).

In this paper, we deal with a generalization of the 2-nonnegative curvature
operator, which is named as 3-parameter (λ1, λ2, λ3)-nonnegative curvature
operator. It relies on four eigenvalues of the Riemannian curvature operator
R.

On a Riemannian manifold Mn, let {ωα}
N
α=1 be an orthonormal basis of

eigenvectors of R in so(n,R) with corresponding eigenvalues µ1(R) ≤ µ2(R) ≤
· · · ≤ µN (R), where N = n (n− 1)/2, and let
(2)

Λ =







(x1, x2, x3) ∈ [0, 1]× [0, 1]× [0, 1]

∣

∣

∣

∣

∣

∣

x3 ≤ x2 ≤ x1,

0 < 1− (xi + xj)xj ≤ xi ≤ 1,
xi + xj ≥ 1, 1 ≤ i 6= j ≤ 3







.

Then as Definition 1.1, the definition of 3-parameter (λ1, λ2, λ3)-nonnegative
curvature operator is given as follows:

Definition 1.2 (3-parameter (λ1, λ2, λ3)-convex cone). Let {ωα}
N
α=1 be an

orthonormal basis for the vector space S2
B

(

∧2
R

n
)

of algebraic curvature oper-
ators, and let Cλ1,λ2,λ3

be the set of all R’s satisfying
(3)

Cλ1,λ2,λ3

=







R

∣

∣

∣

∣

∣

∣

R (ωα, ωα) + λ1R (ωβ, ωβ) + λ2R (ωγ , ωγ) + λ3R (ωδ, ωδ) ≥ 0
λiR (ωα, ωα) + (1− (λi + λj)λj)R (ωβ , ωβ) ≥ 0

(λ1, λ2, λ3) ∈ Λ, 1 ≤ i 6= j ≤ 3, 1 ≤ α < β < γ < δ ≤ N







,

Then Cλ1,λ2,λ3
can be embedded in each fiber of the fiber bundle S2

B

(

∧2TMn
)

of curvature operators on Mn because of the O(n)-invariance. Then we call
Cλ1,λ2,λ3

a 3-parameter (λ1, λ2, λ3)-convex cone.

Definition 1.3 (3-parameter (λ1, λ2, λ3)-nonnegative curvature operator). If
for each x ∈ Mn, the curvature operator R at x belongs to Cλ1,λ2,λ3

, then we
say the Riemannian manifold (Mn, g) has (λ1, λ2, λ3)-nonnegative curvature
operator.

Remark 2. The 3-parameter (λ1, λ2, λ3)-positive curvature operator C+
λ1,λ2,λ3

is defined in the obvious way with > replacing ≥ in (3).
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Remark 3. It is easy to see that when λ1 = 1, λ2 = λ3 = 0, the 3-parameter
(1, 0, 0)-nonnegative curvature turns into 2-nonnegative curvature operator in
[1]. Actually, it can be seen in Section 2 that

⋂

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
= {R |Rαα ≥ 0, 1 ≤ α ≤ N }

and
⋃

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
= {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N } .

Remark 4. But the 3-parameter (λ1, λ2, λ3)-nonnegative curvature operator is
not always equal to 2-nonnegative curvature. For example, when

(λ1, λ2, λ3) =

(

3

4
,
1

2
, 0

)

,

or more generally, when λ1 > 1− (λ1 + λ2)λ2 and λ3 = 0, the curvature oper-
ator R11 = −1,R22 = 1, . . . which satisfies 2-nonnegativity is not 3-parameter
nonnegative.

Setting λ = (λ1, λ2, λ3) ∈ Λ, we will use 3-parameter λ-nonnegative cur-
vature operator to represent the 3-parameter (λ1, λ2, λ3)-nonnegativity in the
rest of paper, which would lighten a bit the notations. Now, we formulate one
of the main results of this paper as follows:

Theorem 1.4. The convex cone Cλ1,λ2,λ3
of 3-parameter λ-nonnegative alge-

braic curvature operators is preserved as a subset of S2
B

(

∧2
R

n
)

by Hamilton’s

ODE
dR

dt
= R2 +R#.

On the other hand, the following maximum principle established by Hamil-
ton, Chow and Lu (see [4]) is very useful in the research of Ricci flow:

Theorem 1.5 (Maximum principle for convex sets). Let (Mn, g (t)) be a so-

lution to the Ricci flow and let K (t) ⊂ E = ∧2TMn ⊗S ∧2TMn be sub-

sets which are invariant under parallel translation and whose intersections

K (t)x = K (t) ∩ Ex with each fiber are closed and convex. Suppose also that

the set {(v, t) ∈ E × [0, T ) | v ∈ K (t)} is closed in E × [0, T ) and suppose the

ODE
dM

dt
= M2 +M#

has the property that for any M (t0) ∈ K (t0), we have M (t) ∈ K (t) for

arbitrary t ∈ [t0, T ). Then, if R (0) ∈ K (0), we have R (t) ∈ K (t) for arbitrary
t ∈ [0, T ).

Using Theorem 1.4 and Theorem 1.5, we can derive directly the weak max-
imum principle for 3-parameter λ-nonnegativity:
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Theorem 1.6 (Weak maximum principle for 3-parameter λ-nonnegativity).
Let (Mn, g (t)), t ∈ [0, T ) be a solution to the Ricci flow on a closed manifold.

If the curvature operator R(g(0)) is 3-parameter λ-nonnegative, then for any

0 ≤ t < T , the curvature operator R(g(t)) is also 3-parameter λ-nonnegative.

Remark 5. Since when λ1 = 1, λ2 = λ3 = 0, the 3-parameter (1, 0, 0)-
nonnegative curvature operator turns into the well-known 2-nonnegative curva-
ture operator studied by Chen in dimension 4 [2] and mentioned in the work of
Micallef and Moore [7], as a corollary of Theorem 1.6, we obtain the invariance
of 2-nonnegative curvature along the Ricci flow again.

Theorem 1.7 (Weak maximum principle for 2-nonnegativity). Let (Mn, g (t)),
t ∈ [0, T ) be a solution to the Ricci flow on a closed manifold. If the curvature

operator R(g(0)) is 2-nonnegative, then for any 0 ≤ t < T , the curvature

operator R(g(t)) is also 2-nonnegative.

On the other hand, in [1] Böhm and Wilking also derive a convergence result
for the 2-positive curvature operator along the Ricci flow:

Theorem 1.8 (Böhm and Wilking). On a compact manifold, the normalized

Ricci flow evolves a Riemannian metric with 2-positive curvature operator to a

limit metric with constant sectional curvature.

Thus by using Theorem 1.8 and the result
⋃

(λ1,λ2,λ3)∈Λ

C+
λ1,λ2,λ3

= {R |Rαα +Rββ > 0, 1 ≤ α < β ≤ N } ,

which is proved in Section 2, we can derive a similar convergence result of
3-parameter λ-positive curvature operator along the Ricci flow as follows:

Theorem 1.9. For arbitrary λ = (λ1, λ2, λ3) ∈ Λ, on a compact manifold, the

normalized Ricci flow
∂g

∂t
= −2Ric (g) +

2

n
rg

evolves a Riemannian metric with 3-parameter λ-positive curvature operator to

a limit metric with constant sectional curvature.

The paper is organized as follows. In Section 2, we present some preliminar-
ies and obtain a rigidity property of manifolds with 3-parameter λ-nonnegative
curvature operators. In Section 3, we prove Theorem 1.4 by a direct calcula-
tion. In Section 4, we prove the strong maximum principle for the 3-parameter
λ-nonnegativity along the Ricci flow.

2. Preliminaries and a rigidity property

Let (V, 〈 , 〉) be a Euclidean vector space. Then ∧2V has a natural scalar
product defined by

〈u ∧ v, u′ ∧ v′〉 = 〈u, u′〉 〈v, v′〉 − 〈u, v′〉 〈u′, v〉 .
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One can then identify ∧2V with so(V ) by the following natural isomorphism:

∧2V → so (V )

u ∧ v 7→ (x 7→ 〈u, x〉 v − 〈v, x〉u) .

Moreover, this isomorphism is an isometry when so(V ) is endowed with the
scalar product 〈A,B〉 = 1

2Tr
(

ABT
)

. The Lie algebra structure on ∧2V that
allows one to define the # operator (see below) on curvature operators comes
from this identification and the usual Lie bracket on so(V ) (namely, the com-
mutator of endomorphisms).

In this paper, we set the Euclidean vector space V = ∧2T ∗Mn. For an

orthonormal basis {ϕα}Nα=1 of ∧2T ∗Mn, the structure constants for the Lie
bracket are given by

[

ϕα, ϕβ
]

=
∑

γ

cαβγ ϕγ .

Hence
cαβγ =

〈[

ϕα, ϕβ
]

, ϕγ
〉

,

and cαβγ is anti-symmetric in all 3 variables. The sharp product operator # for

the Lie algebra ∧2T ∗Mn with the dual orthonormal basis {ϕα}
N
α=1 for ∧2TMn

is defined by

(A#B)αβ = (A#B) (ϕα, ϕβ) =
1

2
cγηα cδθβ AγδBηθ.

For the 3-parameter λ-nonnegative curvature operator convex cone Cλ1,λ2,λ3
,

we have the following interesting property:

Theorem 2.1. Let

Λ =







(x1, x2, x3) ∈ [0, 1]× [0, 1]× [0, 1]

∣

∣

∣

∣

∣

∣

x3 ≤ x2 ≤ x1,

0 < 1− (xi + xj)xj ≤ xi ≤ 1,
xi + xj ≥ 1, 1 ≤ i 6= j ≤ 3







.

Then we have

(4)
⋂

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
= {R |Rαα ≥ 0, 1 ≤ α ≤ N } ,

(5)
⋃

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
= {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N } ,

and

(6)
⋃

(λ1,λ2,λ3)∈Λ

C+
λ1,λ2,λ3

= {R |Rαα +Rββ > 0, 1 ≤ α < β ≤ N } .

Proof. First we prove (4). For any R ∈ {R |Rαα ≥ 0, 1 ≤ α ≤ N }, we have

Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ ≥ 0

and
λiRαα + (1− (λi + λj)λj)Rββ ≥ 0
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for arbitrary 1 ≤ α < β < γ < δ ≤ N , 1 ≤ i 6= j ≤ 3 and (λ1, λ2, λ3) ∈ Λ. This
implies R ∈ Cλ1,λ2,λ3

. Then

{R |Rαα ≥ 0, 1 ≤ α ≤ N } ⊂ Cλ1,λ2,λ3

for arbitrary (λ1, λ2, λ3) ∈ Λ, and hence
⋂

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
⊃ {R |Rαα ≥ 0, 1 ≤ α ≤ N } .

Conversely, without loss of generality, we consider a fixed λ1. Since

0 ≤

√

λ
2

1 + 4− λ1

2
=

2
√

λ
2

1 + 4 + λ1

≤ 1

and
2

√

λ
2

1 + 4 + λ1

< λ1

for sufficiently large λ1, we have
(

λ1, λ2, λ3

)

∈ Λ if
∣

∣

∣

∣

∣

∣

λi −

√

λ
2

1 + 4− λ1

2

∣

∣

∣

∣

∣

∣

is sufficiently small, where i = 2, 3. Thus for any R ∈
⋂

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
, we

have R ∈ Cλ1,λ2,λ3
, where

(

λ1, λ2, λ3

)

∈ Λ. It follows that

λ1Rαα +
(

1−
(

λ1 + λ2

)

λ2

)

Rββ ≥ 0

for arbitrary 1 ≤ α < β ≤ N and
(

λ1, λ2, λ3

)

∈ Λ, which implies

R11 ≥ −
1−

(

λ1 + λ2

)

λ2

λ1

R22

for the above arbitrary
(

λ1, λ2, λ3

)

∈ Λ. Then let λ2 tend to
√

λ
2

1 + 4− λ1

2

decreasing monotonically such that
(

λ1, λ2, λ3

)

∈ Λ. Then we have

1−
(

λ1 + λ2

)

λ2 → 0,

which implies R11 ≥ 0. Since R11 ≤ R22 ≤ · · · ≤ RNN , it follows that

R ∈ {R |Rαα ≥ 0, 1 ≤ α ≤ N } .

Thus
⋂

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
⊂ {R |Rαα ≥ 0, 1 ≤ α ≤ N } .
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Secondly, we prove (5). For any (λ1, λ2, λ3) ∈ Λ, if R ∈ Cλ1,λ2,λ3
, then we

have

λiRαα + (1− (λi + λj)λj)Rββ ≥ 0

for arbitrary 1 ≤ α < β ≤ N and 1 ≤ i 6= j ≤ 3. Then by the definition of Λ
and the choices of λ1, λ2, we have

Rαα +Rββ =
1

λ1
(λ1Rαα + λ1Rββ)

≥ λ1Rαα + (1− (λ1 + λ2)λ2)Rββ

≥ 0.

Hence

Cλ1,λ2,λ3
⊂ {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N }

for any (λ1, λ2, λ3) ∈ Λ, which implies

(7)
⋃

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
⊂ {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N } .

Conversely, when λ1 = 1, λ2 = λ3 = 0, the 3-parameter (1, 0, 0)-nonnegative
curvature operator gives

C1,0,0 = {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N } ,

which implies

(8)
⋃

(λ1,λ2,λ3)∈Λ

Cλ1,λ2,λ3
⊃ C1,0,0 = {R |Rαα +Rββ ≥ 0, 1 ≤ α < β ≤ N } .

Now (7) and (8) imply (5).
The proof of (6) is similar to that of (5). We only need to note that

Rαα +Rββ =
1

λ1
(λ1Rαα + λ1Rββ)

≥ λ1Rαα + (1− (λ1 + λ2)λ2)Rββ

> 0,

and when λ1 = 1, λ2 = λ3 = 0, the 3-parameter (1, 0, 0)-positive curvature
operator is C1,0,0 = {R |Rαα +Rββ > 0, 1 ≤ α < β ≤ N } . �

Let {ϕα}
N
α=1 = {ei ∧ ej}i<j

be an orthonormal basis for ∧2
R

n, where each

α corresponds to a pair (i, j) with i < j. Then we have the following re-
lated rigidity property of manifolds with 3-parameter λ-nonnegative curvature
operators.

Theorem 2.2 (A rigidity property of scalar curvature for manifolds with 3-pa-
rameter λ-nonnegativity). The manifold with 3-parameter λ-nonnegativity has

nonnegative scalar curvature Scal (R), and with equality if and only if R = 0.
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Proof. We compute

Tr (R) =
N
∑

α=1

〈R (ϕα) , ϕα〉

=
∑

i<j

〈R (ei ∧ ej) , ei ∧ ej〉

=
1

2

∑

i,j

Rijij

=
1

2
Tr (Rc (R))

=
1

2
Scal (R) .

On the other hand, since R is 3-parameter λ-nonnegative, we have

0 ≤
∑

1≤α6=β 6=γ 6=δ≤N

Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ

= (N − 1) (N − 2) (N − 3) (1 + λ1 + λ2 + λ3)Tr (R)

=
1

2
Scal (R) (N − 1) (N − 2) (N − 3) (1 + λ1 + λ2 + λ3) ,

which implies that Scal (R) ≥ 0. Hence if Scal (R) = 0, then

Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ = 0

for any 1 ≤ α 6= β 6= γ 6= δ ≤ N , which implies that Rαα = 0 for any
1 ≤ α ≤ N . �

Remark 6. The fact in Theorem 2.2 was proven in [8] for nonnegative isotropic
curvature. Recall that in [7], it is proved that 2-nonnegative curvature opera-
tor implies positive isotropic curvature. Thus Theorem 2.2 is in fact a direct
corollary of a theorem of Micallef and Wang in [8].

3. Proof of Theorem 1.4

Note that the invariance under parallel translation of Cλ1,λ2,λ3
is obvious.

For the convexity of Cλ1,λ2,λ3
, we use the fact that the sum of its first k

eigenvalues which is associated to the curvature operator matrix under the
orthonormal basis of eigenvectors of R in so(n,R) is convex. Note that the
inequalities defining Cλ1,λ2,λ3

can be expressed as

R11 + λ1R22 + λ2R33 + λ3R44

= λ3 (R11 +R22 +R33 +R44) + (λ2 − λ3) (R11 +R22 +R33)

+ (λ1 − λ2) (R11 +R22) + (1− λ1)R11

and

λiR11 + (1− (λi + λj)λj)R22
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= (1− (λi + λj)λj) (R11 +R22) + (λi − 1 + (λi + λj)λj)R11,

which are two conical combinations of these convex functions. Because of the
properties of Λ, we have that R11 + λ1R22 + λ2R33 + λ3R44 and λiR11 +
(1− (λi + λj) λj)R22 are both convex.

Moreover, by the definition of Cλ1,λ2,λ3
, we actually have 0 ≤ R22 ≤ · · · ≤

RNN , which implies any convex conical combination of Rαα,Rββ,Rγγ ,Rδδ,
where 2 ≤ α, β, γ, δ ≤ N , is convex.

Then we turn to prove that R2 + R# lies inside the tangent cone of the
convex cone Cλ1,λ2,λ3

of 3-parameter λ-nonnegative curvature operators for
any R ∈ ∂Cλ1,λ2,λ3

.

Let {ωα}
N
α=1 be an orthonormal basis of eigenvectors of R in so(n,R) with

corresponding eigenvalues µ1(R) ≤ µ2(R) ≤ · · · ≤ µN (R), where N = n(n−1)
2 .

Given S ∈ S2
B (so (n)), let Sαβ = S (ωα, ωβ). If R ∈ ∂Cλ1,λ2,λ3

, then a vector
S at the point R is in the tangent cone of Cλ1,λ2,λ3

if and only if
(i) Sαα + λ1Sββ + λ2Sγγ + λ3Sδδ ≥ 0 for arbitrary 1 ≤ α < β < γ < δ ≤ N

such that
Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ = 0

and
λiRαα + (1− (λi + λj)λj)Rββ = 0,

where 1 ≤ i 6= j ≤ 3.
(ii) λiSαα + (1− (λi + λj)λj)Sββ ≥ 0 for arbitrary 1 ≤ α < β ≤ N such

that
Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ = 0

and
λiRαα + (1− (λi + λj)λj)Rββ = 0,

where 1 ≤ i 6= j ≤ 3.

Since {ωα}
N
α=1 is an orthonormal basis of eigenvectors of R in so(n,R) with

corresponding eigenvalues µ1(R) ≤ µ2(R) ≤ · · · ≤ µN (R), we have R11 ≤
R22 ≤ · · · ≤ RNN , where µα(R) = R (ωα, ωα) = Rαα. Thus

Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ ≥ R11 + λ1R22 + λ2R33 + λ3R44

and

λiRαα + (1− (λi + λj)λj)Rββ ≥ λiR11 + (1− (λi + λj)λj)R22

for arbitrary 1 ≤ α < β < γ < δ ≤ N and 1 ≤ i 6= j ≤ 3.
Hence we only need to prove

R11 + λ1R22 + λ2R33 + λ3R44 ≥ 0

and
λiR11 + (1− (λi + λj)λj)R22 ≥ 0,

where 1 ≤ i 6= j ≤ 3, are preserved by the ODE dR/dt = R2 +R#. Note that
a convex set is preserved by the flow of a vector field if and only if at each point
of the boundary of the convex set, the vector field points towards the inside



838 XIANG GAO

of the convex set. Then the proof of Theorem 1.4 is reduced to the following
Claim 3.1 (see also [3]):

Claim 3.1. (i) If

Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ = 0

and
λiRαα + (1− (λi + λj)λj)Rββ ≥ 0

for arbitrary 1 ≤ α < β < γ < δ ≤ N , (λ1, λ2, λ3) ∈ Λ and 1 ≤ i 6= j ≤ 3, then
(

R2 +R#
)

αα
+ λ1

(

R2 +R#
)

ββ
+ λ2

(

R2 +R#
)

γγ
+ λ3

(

R2 +R#
)

δδ
≥ 0,

where
(

R2 +R#
)

αα
=

(

R2 +R#
)

(ωα, ωα).

(ii) If
Rαα + λ1Rββ + λ2Rγγ + λ3Rδδ ≥ 0

and
λiRαα + (1− (λi + λj)λj)Rββ = 0

for arbitrary 1 ≤ α < β < γ < δ ≤ N , (λ1, λ2, λ3) ∈ Λ and 1 ≤ i 6= j ≤ 3, then

λi

(

R2 +R#
)

αα
+ (1− (λi + λj)λj)

(

R2 +R#
)

ββ
≥ 0.

Proof. (i) By calculation, we see
(

R2 +R#
)

11
+ λ1

(

R2 +R#
)

22
+ λ2

(

R2 +R#
)

33
+ λ3

(

R2 +R#
)

44

= µ2
1 + λ1µ

2
2 + λ2µ

2
3 + λ3µ

2
4

+ 2
∑

α<β

(

(

c
αβ
1

)2

+ λ1

(

c
αβ
2

)2

+ λ2

(

c
αβ
3

)2

+ λ3

(

c
αβ
4

)2
)

µαµβ .

We only need to prove the right-hand side of the equality is nonnegative. In
fact,

∑

α<β

(

(

c
αβ
1

)2

+ λ1

(

c
αβ
2

)2

+ λ2

(

c
αβ
3

)2

+ λ3

(

c
αβ
4

)2
)

µαµβ

=
∑

2≤α<β

(

c
αβ
1

)2

µαµβ +
∑

1≤α<β

λ1

(

c
αβ
2

)2

µαµβ +
∑

1≤α<β

λ2

(

c
αβ
3

)2

µαµβ

+
∑

1≤α<β

λ3

(

c
αβ
4

)2

µαµβ

=
∑

β>2

(

c
2β
1

)2

µ2µβ +
∑

β>3

(

c
3β
1

)2

µ3µβ +
∑

β>4

(

c
4β
1

)2

µ4µβ

+
∑

5≤α<β

(

c
αβ
1

)2

µαµβ + λ1

∑

β>2

(

c
1β
2

)2

µ1µβ + λ1

∑

β>3

(

c
3β
2

)2

µ3µβ

+ λ1

∑

β>4

(

c
4β
2

)2

µ4µβ + λ1

∑

5≤α<β

(

c
αβ
2

)2

µαµβ + λ2

(

c123
)2

µ1µ2
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+ λ2

∑

β>3

(

c
1β
3

)2

µ1µβ + λ2

∑

β>3

(

c
2β
3

)2

µ2µβ + λ2

∑

β>4

(

c
4β
3

)2

µ4µβ

+ λ2

∑

5≤α<β

(

c
αβ
3

)2

µαµβ + λ3

(

c124
)2

µ1µ2 + λ3

(

c134
)2

µ1µ3

+ λ3

∑

β>4

(

c
1β
4

)2

µ1µβ + λ3

(

c234
)2

µ2µ3 + λ3

∑

β>4

(

c
2β
4

)2

µ2µβ

+ λ3

∑

β>4

(

c
3β
4

)2

µ3µβ + λ3

∑

5≤α<β

(

c
αβ
4

)2

µαµβ

=
(

c231
)2

(µ2µ3 + λ1µ1µ3 + λ2µ1µ2) +
(

c241
)2

(µ2µ4 + λ1µ1µ4 + λ3µ1µ2)

+
(

c341
)2

(µ3µ4 + λ2µ1µ4 + λ3µ1µ3) +
(

c342
)2

(λ1µ3µ4 + λ2µ2µ4 + λ3µ2µ3)

+
∑

β>4

(

c
2β
1

)2

(µ2 + λ1µ1)µβ +
∑

β>4

(

c
3β
1

)2

(µ3 + λ2µ1)µβ

+
∑

β>4

(

c
4β
1

)2

(µ4 + λ3µ1)µβ +
∑

β>4

(

c
3β
2

)2

(λ1µ3 + λ2µ2)µβ

+
∑

β>4

(

c
4β
2

)2

(λ1µ4 + λ3µ2)µβ +
∑

β>4

(

c
4β
3

)2

(λ2µ4 + λ3µ3)µβ

+
∑

5≤α<β

(

c
αβ
1

)2

µαµβ + λ1

∑

5≤α<β

(

c
αβ
2

)2

µαµβ

+ λ2

∑

5≤α<β

(

c
αβ
3

)2

µαµβ + λ3

∑

5≤α<β

(

c
αβ
4

)2

µαµβ .

Since µ2 + λ1µ1 ≥ (1− (λ1 + λ2) λ2)µ2 + λ1µ1 ≥ 0, we have

∑

β>4

(

c
2β
1

)2

(µ2 + λ1µ1)µβ ≥ 0.

For the same reason, we also have
∑

β>4

(

c
3β
1

)2

(µ3 + λ2µ1)µβ ≥ 0

and
∑

β>4

(

c
4β
1

)2

(µ4 + λ3µ1)µβ ≥ 0.

Since

µ2µ3 + λ1µ1µ3 + λ2µ1µ2

= λ2µ2 (µ1 + (λ1 + λ2)µ3) + µ3 ((1− (λ1 + λ2)λ2)µ2 + λ1µ1)

≥ 0,
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it follows that
(

c231
)2

(µ2µ3 + λ1µ1µ3 + λ2µ1µ2) ≥ 0.
Then as in the proof above, we also have

(

c241
)2

(µ2µ4 + λ1µ1µ4 + λ3µ1µ2) ≥ 0

and
(

c341
)2

(µ3µ4 + λ2µ1µ4 + λ3µ1µ3) ≥ 0.

Moreover, by the fact that µ1 ≤ 0 ≤ µ2 ≤ · · · ≤ µN , we can also get

(

c342
)2

(λ1µ3µ4 + λ2µ2µ4 + λ3µ2µ3) +
∑

β>4

(

c
3β
2

)2

(λ1µ3 + λ2µ2)µβ

+
∑

β>4

(

c
4β
2

)2

(λ1µ4 + λ3µ2)µβ +
∑

β>4

(

c
4β
3

)2

(λ2µ4 + λ3µ3)µβ

+
∑

5≤α<β

(

c
αβ
1

)2

µαµβ + λ1

∑

5≤α<β

(

c
αβ
2

)2

µαµβ + λ2

∑

5≤α<β

(

c
αβ
3

)2

µαµβ

+ λ3

∑

5≤α<β

(

c
αβ
4

)2

µαµβ ≥ 0.

Thus all of above lead to
∑

α<β

(

(

c
αβ
1

)2

+ λ1

(

c
αβ
2

)2

+ λ2

(

c
αβ
3

)2

+ λ3

(

c
αβ
4

)2
)

µαµβ ≥ 0,

which is to say that
(

R2 +R#
)

11
+ λ1

(

R2 +R#
)

22
+ λ2

(

R2 +R#
)

33
+ λ3

(

R2 +R#
)

44
≥ 0.

(ii) As in the proof of (i), without loss of generality, we only need to consider
(λi, λj) = (λ1, λ2). Let γ = λ1 and δ = 1−(λ1 + λ2)λ2. By a direct calculation,
we have

λ1

(

R2 +R#
)

11
+ (1− (λ1 + λ2)λ2)

(

R2 +R#
)

22

= γµ2
1 + δµ2

2 + 2
∑

α<β

(

γ
(

c
αβ
1

)2

+ δ
(

c
αβ
2

)2
)

µαµβ .

Then we only need to prove the right-hand side is nonnegative. In fact,
∑

α<β

(

γ
(

c
αβ
1

)2

+ δ
(

c
αβ
2

)2
)

µαµβ

= γ
∑

2≤α<β

(

c
αβ
1

)2

µαµβ + δ
∑

1≤α<β

(

c
αβ
2

)2

µαµβ

= γ
∑

β>2

(

c
2β
1

)2

µ2µβ + δ
∑

β>2

(

c
1β
2

)2

µ1µβ + γ
∑

3≤α<β

(

c
αβ
1

)2

µαµβ

+ δ
∑

3≤α<β

(

c
αβ
2

)2

µαµβ
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=
∑

β>2

(

c
2β
1

)2

(γµ2 + δµ1)µβ + γ
∑

3≤α<β

(

c
αβ
1

)2

µαµβ + δ
∑

3≤α<β

(

c
αβ
2

)2

µαµβ

= δ
∑

β>2

(

c
2β
1

)2 (γ

δ
µ2 + µ1

)

µβ + γ
∑

3≤α<β

(

c
αβ
1

)2

µαµβ + δ
∑

3≤α<β

(

c
αβ
2

)2

µαµβ .

Since γ = λ1 ≥ 1− (λ1 + λ2) λ2 = δ > 0, we have

∑

α<β

(

γ
(

c
αβ
1

)2

+ δ
(

c
αβ
2

)2
)

µαµβ

≥ δ
∑

β>2

(

c
2β
1

)2
(

δ

γ
µ2 + µ1

)

µβ + γ
∑

3≤α<β

(

c
αβ
1

)2

µαµβ + δ
∑

3≤α<β

(

c
αβ
2

)2

µαµβ

≥ 0. �

4. The strong maximum principle for 3-parameter λ-nonnegativity

Theorem 4.1 (Strong maximum principle for 3-parameter λ-nonnegativity).
Let (Mn, g (t)), t ∈ [0, T ) be a solution to the Ricci flow on a closed manifold.

If the curvature operator R(g(0)) is 3-parameter λ-nonnegative, then

(i) For any t > 0, the curvature operator R(g(t)) is either nonnegative or

3-parameter λ-positive.

(ii) If R(g(0)) is 3-parameter λ-positive at a point in Mn, then R(g(t)) is

3-parameter λ-positive everywhere for 0 < t < T .

Proof. By Theorem 1.4, we have R(g(t)) is also 3-parameter λ-nonnegative for
all t > 0. We will prove (ii) first.

(ii) As in the proof of Theorem 1.4 we only need to consider (α, β, γ, δ) =
(1, 2, 3, 4). Let ϕ (x) be a smooth nonnegative function such that

ϕ (x) ≤
µ1 (R (x, 0)) + λ1µ2 (R (x, 0)) + λ2µ3 (R (x, 0)) + λ3µ4 (R (x, 0))

1 + λ1 + λ2 + λ3

and

ϕ (x) ≤
λiµ1 (R (x, 0)) + (1− (λi + λj)λj)µ2 (R (x, 0))

λi + (1− (λi + λj)λj)

for all x ∈ Mn and 1 ≤ i 6= j ≤ 3. We also assume that there exists x0 ∈ Mn

such that

ϕ (x0) ≥
µ1 (R (x0, 0)) + λ1µ2 (R (x0, 0)) + λ2µ3 (R (x0, 0)) + λ3µ4 (R (x, 0))

2 (1 + λ1 + λ2 + λ3)

and

ϕ (x0) ≥
λiµ1 (R (x0, 0)) + (1− (λi + λj)λj)µ2 (R (x0, 0))

2 (λi + (1− (λi + λj)λj))
.

Let f(x, t) be a solution to

∂f

∂t
= ∆f −Af
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such that f (x, 0) = ϕ (x). Define

R̃ (x, t) = R (x, t) +
(

εeAt − f (x, t)
)

id∧2 (x) ,

where ε > 0. For A sufficiently large, with Ricci flow equation

∂

∂t
g = −2Ric (g)

we can prove that (see [3])

(9)
∂

∂t
R̃ > ∆R̃+ R̃2 + R̃#

for ε ∈
(

0, e−AT
]

. Moreover, when t = 0, we have

R̃ (x, 0) = R (x, 0) + (ε− f (x, 0)) id∧2 (x) = R (x, 0) + (ε− ϕ (x)) id∧2 (x) .

By using the definition of ϕ (x), we have
(

R̃ (x, 0)
)

11
+ λ1

(

R̃ (x, 0)
)

22
+ λ2

(

R̃ (x, 0)
)

33
+ λ3

(

R̃ (x, 0)
)

44

= µ1 (R (x, 0)) + λ1µ2 (R (x, 0)) + λ2µ3 (R (x, 0)) + λ3µ4 (R (x, 0))

− (1 + λ1 + λ2 + λ3)ϕ (x) + (1 + λ1 + λ2 + λ3) ε

> 0,

and

λi

(

R̃ (x, 0)
)

11
+ (1− (λi + λj)λj)

(

R̃ (x, 0)
)

22

= λiµ1 (R (x, 0)) + (1− (λi + λj)λj)µ2 (R (x, 0))

− (λi + (1− (λi + λj)λj))ϕ (x) + (λi + (1− (λi + λj)λj)) ε

> 0

for any 1 ≤ i 6= j ≤ 3.
Then applying Theorem 1.5 and 1.6 to (9), we have
(

R̃ (x, t)
)

11
+ λ1

(

R̃ (x, t)
)

22
+ λ2

(

R̃ (x, t)
)

33
+ λ3

(

R̃ (x, t)
)

44
≥ 0

and

λi

(

R̃ (x, t)
)

11
+ (1− (λi + λj)λj)

(

R̃ (x, t)
)

22
≥ 0

for all t > 0. Thus taking the limit as ε → 0, we conclude that

µ1 (R (x, t)) + λ1µ2 (R (x, t)) + λ2µ3 (R (x, t)) + λ3µ4 (R (x, t))

− (1 + λ1 + λ2 + λ3) f (x, t) id∧2 (x) ≥ 0

and

λiµ1 (R (x, t)) + (1− (λi + λj) λj)µ2 (R (x, t))

− (λi + (1− (λi + λj) λj)) f (x, t) id∧2 (x) ≥ 0

for arbitrary (x, t) ∈ Mn × [0, T ).
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On the other hand, since f(x, t) is a solution to the parabolic equation

∂f

∂t
= ∆f −Af

such that f (x0, 0) = ϕ (x0) > 0, by the strong maximum principle for the
parabolic equation, we have f(x, t) > 0 for arbitrary (x, t) ∈ Mn × [0, T ).
Hence

µ1 (R (x, t)) + λ1µ2 (R (x, t)) + λ2µ3 (R (x, t)) + λ3µ4 (R (x, t)) > 0

and

λiµ1 (R (x, t)) + (1− (λi + λj)λj)µ2 (R (x, t)) > 0

for arbitrary (x, t) ∈ Mn × [0, T ) and 1 ≤ i 6= j ≤ 3.
(i) By (ii), if g(t1) is 3-parameter λ-nonnegative everywhere in Mn and 3-

parameter λ-positive at a point in Mn, then g(t) is 3-parameter λ-positive
everywhere for t > t1.

As in the proof of (ii), without loss of generality, we only need to consider
(α, β, γ, δ) = (1, 2, 3, 4). Hence if for some t0 > 0, we have
(10)
µ1 (R (x0, t0)) + λ1µ2 (R (x0, t0)) + λ2µ3 (R (x0, t0)) + λ3µ4 (R (x0, t0)) = 0

or

(11) λiµ1 (R (x0, t0)) + (1− (λi + λj)λj)µ2 (R (x0, t0)) = 0

at point x0 and for 1 ≤ i 6= j ≤ 3, then we consider the following two cases:
If (10) is satisfied, by (ii), we have

µ1 (R (x, t)) + λ1µ2 (R (x, t)) + λ2µ3 (R (x, t)) + λ3µ4 (R (x, t)) = 0

for arbitrary (x, t) ∈ Mn × [0, t0]. We will prove the following result:

(12) µ1 (R (x, t)) = µ2 (R (x, t)) = µ3 (R (x, t)) = µ4 (R (x, t)) = 0

for arbitrary (x, t) ∈ Mn × [0, t0].
To prove (12), pick some (x1, t1) and let ω1, ω2, ω3 and ω4 be the unit 2-

forms at (x1, t1), which are the eigenvectors for R (x1, t1) corresponding to
µ1 (R (x1, t1)), µ2 (R (x1, t1)) , µ3 (R (x1, t1)) and µ4 (R (x1, t1)), respectively.
Parallel translate ω1, ω2, ω3 and ω4 along geodesics emanating from x1 with
respect to g(t1) to define ω1, ω2, ω3 and ω4 in a space-time neighborhood of
(x1, t1), where ω1, ω2, ω3 and ω4 are independent of time (see [3]). Then the
calculation is done considering R (x, t) and evaluating at (x1, t1). Moreover,
by matrix analysis, for arbitrary (x, t) ∈ Mn, we also have (see [6])
(13)

R (ω1, ω1) + λ1R (ω2, ω2) + λ2R (ω3, ω3) + λ3R (ω4, ω4)

= inf

{

R (Vi, Vi) + λ1R (Vj , Vj)
+λ2R (Vk, Vk) + λ3R (Vl, Vl)

∣

∣

∣

∣

Vi⊥Vj⊥Vk⊥Vl, 1 ≤ i, j, k, l ≤ N

‖Vi‖ = ‖Vj‖ = ‖Vk‖ = ‖Vl‖ = 1

}

,
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where ‖·‖ denotes the Euclidean metric for the space ∧2T ∗Mn. Then we have
at (x1, t1):

0 ≥
∂

∂t
(R (ω1, ω1) + λ1R (ω2, ω2) + λ2R (ω3, ω3) + λ3R (ω4, ω4))

=

(

∂

∂t
R

)

(ω1, ω1) + λ1

(

∂

∂t
R

)

(ω2, ω2) + λ2

(

∂

∂t
R

)

(ω3, ω3)

+ λ3

(

∂

∂t
R

)

(ω4, ω4)

=
(

∆R+R2 +R#
)

(ω1, ω1) + λ1

(

∆R+R2 +R#
)

(ω2, ω2)

+ λ2

(

∆R+R2 +R#
)

(ω3, ω3) + λ3

(

∆R+R2 +R#
)

(ω4, ω4)

= ∆ (R (ω1, ω1) + λ1R (ω2, ω2) + λ2R (ω3, ω3) + λ3R (ω4, ω4))

+ µ1 (R)
2
+ λ1µ2 (R)

2
+ λ2µ3 (R)

2
+ λ3µ4 (R)

2

+R# (ω1, ω1) + λ1R
# (ω2, ω2) + λ2R

# (ω3, ω3) + λ3R
# (ω4, ω4)

≥ µ1 (R)
2
+ λ1µ2 (R)

2
+ λ2µ3 (R)

2
+ λ3µ4 (R)

2
,

where the last inequality is obtained by the following two inequalities

∑

α<β

(

(

c
αβ
1

)2

+ λ1

(

c
αβ
2

)2

+ λ2

(

c
αβ
3

)2

+ λ3

(

c
αβ
4

)2
)

µαµβ ≥ 0

and

R (ω1, ω1) + λ1R (ω2, ω2) + λ2R (ω3, ω3) + λ3R (ω4, ω4) ≥ 0

for arbitrary x′ 6= x1, while at (x1, t1), we have 0. Hence

µ1 (R (x, t)) = µ2 (R (x, t)) = µ3 (R (x, t)) = µ4 (R (x, t)) = 0

for arbitrary (x, t) ∈ Mn × [0, t0], which implies that R (x, t) ≥ 0 for arbitrary
(x, t) ∈ Mn × [0, t0]. By the maximum principle for tensors, R (x, t) ≥ 0
is preserved under the Ricci flow. Thus we have R (x, t) ≥ 0 for arbitrary
(x, t) ∈ Mn × [0, T ).

If (11) is satisfied, as in the proof above, we also have

µ1 (R (x, t)) = µ2 (R (x, t)) = 0

for arbitrary (x, t) ∈ Mn × [0, t0], which implies R (x, t) ≥ 0 for arbitrary
(x, t) ∈ Mn × [0, T ). �
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