• 제목/요약/키워드: Mathematical equation

검색결과 2,612건 처리시간 0.025초

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • 제30권1호
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.

OPTIMAL CONTROL OF THE VISCOUS WEAKLY DISPERSIVE BENJAMIN-BONA-MAHONY EQUATION

  • ZHANG, LEI;LIU, BIN
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1185-1199
    • /
    • 2015
  • This paper is concerned with the optimal control problem for the viscous weakly dispersive Benjamin-Bona-Mahony (BBM) equation. We prove the existence and uniqueness of weak solution to the equation. The optimal control problem for the viscous weakly dispersive BBM equation is introduced, and then the existence of optimal control to the problem is proved.

ON THE CLOSURE OF DOMINANT OPERATORS

  • Yang, Young-Oh
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.481-487
    • /
    • 1998
  • Let (equation omitted) denote the closure of the set (equation omitted) of dominant operators in the norm topology. We show that the Weyl spectrum of an operator T $\in$ (equation omitted) satisfies the spectral mapping theorem for analytic functions, which is an extension of [5, Theorem 1]. Also we show that an operator approximately equivalent to an operator of class (equation omitted) is of class (equation omitted).

  • PDF

RICCATI EQUATION IN QUADRATIC OPTIMAL CONTROL PROBLEM OF DAMPED SECOND ORDER SYSTEM

  • Ha, Junhong;Nakagiri, Shin-Ichi
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.173-187
    • /
    • 2013
  • This paper studies the properties of solutions of the Riccati equation arising from the quadratic optimal control problem of the general damped second order system. Using the semigroup theory, we establish the weak differential characterization of the Riccati equation for a general class of the second order distributed systems with arbitrary damping terms.

HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Trif, Tiberiu
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.253-267
    • /
    • 2003
  • In this paper we deal With the quadratic functional equation (equation omitted) deriving from an inequality of T. Popoviciu for convex functions. We solve this functional equation by proving that its solutions we the polynomials of degree at most two. Likewise, we investigate its stability in the spirit of Hyers, Ulam, and Rassias.

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

A NEW WAY TO FIND THE CONTROLLING FACTOR OF THE SOLUTION TO A DIFFERENCE EQUATION

  • Park, Seh-Ie
    • 대한수학회지
    • /
    • 제36권5호
    • /
    • pp.833-846
    • /
    • 1999
  • In this paper, we will study the relationship between the controlling factor of the solution to a difference equation and the solution of the corresponding differential equation. Many times the controlling factors are the same. But even the controlling factor of the two solutions may be different, we will discover a way to compute, for first order non-linear equations, the controlling factor of the solution to the difference equation using the solution of the differential equation.

  • PDF