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EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD

WITH A LOWER RICCI CURVATURE BOUND

Jeongwook Chang

Abstract. We consider the parabolic evolution differential equations

such as heat equation and porus-medium equation on a Riemannian

manifold M whose Ricci curvature is bounded below by −(n− 1)k2 and
bounded below by 0 on some amount of M . We derive some bounds of

differential quantities for a positive solution and some inequalities which
resemble Harnack inequalities.

1. Introduction

Parabolic evolution equation on a Riemannian manifold is one of the greatest
interests in geometric analysis. Against the case of Rn, in the case of a Rie-
mannian manifold, the curvatures come in during the analysis of the equations.
For example, a positive solution u : Rn × (0, T ]→ R of the heat equation

∂

∂t
u = ∆u, t > 0,

is known to be satisfied the following Harnack inequality.

u(x2, t2) ≥
( t1
t2

)n
2

u(x1, t1) exp
(
− ‖x2 − x1‖2

4(t2 − t1)

)
, (1)

where 0 < t1 < t2, and xi ∈ Rn.
By the celebrated work of Li and Yau([7]), a nice extension of (1) was ac-

complished to the equations on a complete Riemannian manifold with Ricci
curvature bounded below by 0.

Furthermore, there has been important researches on Harnack inequalities
for various types of nonlinear parabolic equations on Rn(e.g. [2], [3], [4]). For
example, Benedetto showed the following intrinsic Harnack type inequality for
the degenerate porous medium equation.([3])
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Theorem 1.1. For an open subset Ω ⊂ Rn, let u ≥ 0 be any local weak solution
of the porous medium equation in Ω× (0, T ]. Assume that u(x̄, t̄) > 0 for some
(x̄, t̄) ∈ Ω× (0, T ]. Then there exist two constants C0, C1 depending only upon
m and n such that

u(x̄, t̄) ≤ C0 inf
x̄∈BR(x̄)

u(x̄, t̄+ θ),

where

θ =
C1R

2

[u(x̄, t̄)]m−1
,

provided B2R(x̄)× (t̄− θ, t̄+ θ) is contained in Ω× (0, T ].

Also, Auchmuty and Bao studied pointwise bounds of solutions of parabolic
equations which could be degenerate by using gradient estimates techniques in
[7]([2]). Precisely, they showed that for positive solutions of the porus medium
solution

∂u

∂t
= ∆(uM ), t > 0, x ∈ Rn, M > max

{
0, 1− 2

n

}
, M 6= 1,

the following estimate holds.

f(x2, t2) ≥
(
t1
t2

)µ [
f(x1, t1)− δ

4

|x2 − x1|2

tδ2 − tδ1
1

tµ1

]
,

where f =
(

M
M−1

)
uM−1, µ = M−1

M−1+ 2
n

, δ = 1− µ.

And these results were extended to the case of a compact Riemannian man-
ifold with Ricci curvature bounded below by 0 as the following by Lee and the
author in [5].

Theorem 1.2. Let M be an n dimensional Riemannian manifold with non-
negative Ricci curvature. Also, let u be a positive solution of

ut(x, t) = ∆um(x, t), m > 1, 0 < t ≤ T, x ∈M

and BR(x0) be a totally convex geodesic ball in M . Then there are two constants
C1 and C2 = C2(m,n), we have

sup
BR(x0)

u(·, t) ≤ C2 inf
BR(x0)

u(·, t+ θ),

where

θ =
C1R

2

[infB×(0,T ] u]m−1

provided 0 < t−θ < t+θ < T . Moreover C1 and C2 are related by the following.

C2 = 2
2

m−1 exp

(
(m− 1)(n+ 4)

2C1m2

)
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In this paper, we consider heat equation and porus medium equation on a
compact Riemannian manifold M which possibly has negative Ricci curvature
on a certain amount of M . We derive some inequalities for positive solutions
of the equations. The derived inequalities in this article look like Harnack type
inequalities, but we remark that the constants in the inequalities essentially
depend on the solution.

We refer [6] and [1] for detail on the heat equation and porus medium equa-
tion respectively.

2. Notations and preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with a Riemannian
metric g, and denote g(ξ, η) and g(ξ, ξ) by 〈ξ, η〉g and |ξ|2g respectively. We also
use the notation ρ as the distance function induced from g, i.e., for x1, x2 ∈M ,
ρ(x1, x2) is the distance between x1 and x2. Denote Rcg by the Ricci tensor of
(M, g). We say that (M, g) has a Ricci curvature bounded below by −(n−1)k2

if Rcg(ξ, ξ) ≥ −(n − 1)k2 |ξ|2g for all tangent vectors ξ. In this article, we are
mainly interested in an n-dimensional compact Riemannian manifold (M, g)
with the Ricci curvature bounded below by −(n − 1)k2. Now let ∇g and ∆g

be the gradient and the laplacian induced from the Riemannian metric g. The
following is very useful well-known formula in geometric analysis.

Theorem 2.1. (Bochner formula)
For a smooth function u : (M, g)→ R, the following identity holds.

1

2
∆g|∇u|2g = 〈∇g∆gu,∇gu〉g + |∇g∇gu|2g +Rcg(∇gu,∇gu)

Next, consider a conformal metric g̃ = λ2 g of g for a positive constant λ.
Then the followings are easily checked to hold.

∇g̃ = ∇g
∆g̃ = λ−2∆g

|∇g̃u|g̃ = λ−2|∇gu|g
Rcg̃(∇g̃u,∇g̃u) = λ−2Rcg(∇gu,∇gu)

(2)

Since ∇g̃ = ∇g, throughout the paper we use the notation ∇g̃ = ∇g = ∇
ambiguously.

Now let

Lg =
∂

∂t
−∆g

be the heat operator on M , and u : M × (0, T ]→ R+ be a positive solution of
Lg(u) = 0. Consider a time scaled map ũ(x, t) = u(x, λ−2t) of u, then we have
the following from (2).

Lg̃(ũ) = λ−2Lg(u) = 0 (3)
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Similarly for m > 1, let

L(m)
g =

∂

∂t
−∆(m)

g ,

where ∆
(m)
g u = ∆gu

m, be the porus media operator on M , and u : M ×
(0, T ]→ R+ be a positive solution of L

(m)
g (u) = 0. Consider a time scaled map

ũ(x, t) = u(x, λ−2t) of u, then we also have the following from (2).

L
(m)
g̃ (ũ) = λ−2L(m)

g (u) = 0 (4)

3. Heat equation

Let (M, g) be an n-dimensional Riemannian manifold with the Ricci cur-
vature bounded from below by −(n − 1)k2 for some positive constant k. For
the heat operator Lg = ∂

∂t −∆g on M , let u : M × (0, T ] → R+ be a positive
solution of Lg(u) = 0. Define Nε = {(x, t) ∈ M × [ε, T ] | ∆gu(x, t) = 0},
and let N ε be the projection Nε onto M . Suppose there is a compact subset
W ⊂M \N ε such that the Ricci curvature is non-negative on M \W . By using
these notations we can get the following theorem.

Theorem 3.1. Suppose that the above conditions hold for a complete Riemann-
ian manifold M , and let mε = minW×[ε,T ] (∆g lnu)

2
and Mε = maxW×[ε,T ] |∇ lnu|2g.

Then there exists positive α = α(ε, n,mε,Mε) such that

∆g lnu ≥ −α
t

on M × [ε, T ].

Proof. Denote F = lnu and P = ∆gF , and we will show that P ≥ −αt on

M × [ε, T ]. For a positive constant λ, consider the conformal metric g̃ = λ2 g

of g. Denote F̃ = ln ũ and P̃ = ∆g̃F̃ for a time scaled map ũ(x, t) = u(x, λ−2t)
of u. Then by (3), ũ is a positive solution of Lg̃(ũ) = 0 on

[
λ2ε, λ2T

]
. Hence

from

∂

∂t
F̃ =

∂
∂t ũ

ũ
=

∆g̃ũ

ũ

∇F̃ =
∇ũ
ũ

∆g̃F̃ =
∆g̃ũ

ũ
−
|∇ũ|2g̃
ũ2

we have

∂

∂t
F̃ = ∆g̃F̃ + |∇F̃ |2g̃.
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So
∂

∂t
P̃ = ∆g̃

(
∂

∂t
F̃

)
= ∆g̃

(
∆g̃F̃ + |∇F̃ |2g̃

)
= ∆g̃P̃ + 2〈∆g̃∇F̃ ,∇F̃ 〉g̃ + 2|∇∇F̃ |2g̃
= ∆g̃P̃ + 2〈∇∆g̃F̃ ,∇F̃ 〉g̃ + 2Rcg̃

(
∇F̃ ,∇F̃

)
+ 2|∇∇F̃ |2g̃

≥ ∆g̃P̃ + 2〈∇∆g̃F̃ ,∇F̃ 〉g̃ + 2Rcg̃

(
∇F̃ ,∇F̃

)
+

2

n
P̃ 2

So by (2) we have

λ−2 ∂

∂t
P ≥ λ−2∆gP + 2〈∇∆gF,∇F 〉g + 2λ−2Rcg (∇F,∇F ) +

2

n
λ−4P 2,

and
∂

∂t
P ≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g + 2Rcg (∇F,∇F ) +

2

nλ2
P 2.

Because Rcg (∇F,∇F ) ≥ 0 on M \W , we have

∂

∂t
P ≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g +

2

nλ2
P 2

on M \W . With our notations

mε = min
W×[ε,T ]

P and Mε = max
W×[ε,T ]

|∇F |2g.

Since mε > 0, if we take λ <
√

mε
2n(n−1)k2Mε

then we have

∂

∂t
P ≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g + 2Rcg (∇F,∇F ) +

2

nλ2
P 2

≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g − 2(n− 1)k2|∇F |2g +
2

nλ2
P 2

≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g +
1

nλ2
P 2

on W . So finally we have

∂

∂t
P ≥ ∆gP + 2λ2〈∇∆gF,∇F 〉g +

1

nλ2
P 2

on the whole of M . Consider that the solution of the ordinary initial value
differential equation {

d
dtK(t) = 1

nλ2 (K(t))
2

K(0) = −∞

is given by K(t) = −nλ
2

t . So we can have the following.

∂

∂t
(P −K) ≥ ∆g(P −K) + 2λ2〈∇(P −K),∇F 〉g +

1

nλ2

(
P 2 −K2

)
,

Hence by the usual maximum principle argument, we have

P ≥ −nλ
2

t
.
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Taking α = nλ2 completes the proof. �

We remark that in Theorem 3.1 if the equation Lg(u) = 0 holds on [0, T ] for
a positive solution u, then the dependency on ε of α can be removed.

Corollary 3.2. Under the same conditions as those in Theorem 3.1,

u(x2, t2)

u(x1, t1)
≥
(
t2
t1

)α
e
− {ρ(x1,x2)}2

4(t2−t1)

holds for the same α in Theorem 3.1.

Proof. Let γ : [t1, t2]→M be a minimizing geodesic from x1 to x2 with∣∣∣∣dγdt
∣∣∣∣ =

ρ(x1, x2)

t2 − t1
.

F (x2, t2)− F (x1, t1) =

∫ t2

t1

d

dt
F (γ(t), t)dt

=

∫ t2

t1

(
∂

∂t
F (γ(t), t) +

〈
∇F (γ(t), t),

dγ

dt
(t)

〉)
dt

=

∫ t2

t1

∂
∂tu

u
−

(∣∣∣∣∇uu
∣∣∣∣2 +

1

4

∣∣∣∣dγdt
∣∣∣∣2
)

=

∫ t2

t1

(
P − 1

4

∣∣∣∣dγdt
∣∣∣∣2
)
dt

≥
∫ t2

t1

(
−α
t
− {ρ(x1, x2)}2

4 (t2 − t1)
2

)
dt

= ln

(
t1
t2

)α
− {ρ(x1, x2)}2

4 (t2 − t1)

By exponentiation the both sides, we completes the proof. �

4. Porus medium equation

Let (M, g) be an n-dimensional Riemannian manifold with the Ricci cur-
vature bounded from below by −(n − 1)k2 for some positive constant k. Let
u : M × (0, T ] → R+ be a positive solution of the porus medium equation

L
(m)
g (u) = ∂

∂tu − ∆gu
m = 0 (m > 1). Define N

(m)
ε = {(x, t) ∈ M × [ε, T ] |

(m− 2)|∇u|2 + u∆u = 0}, and N
(m)

ε as the projection N
(m)
ε onto M . Suppose

there is a compact subset W (m) ⊂ M \N (m)

ε such that the Ricci curvature is
non-negative on M \W (m).

Theorem 4.1. Suppose that the above conditions hold for a complete Rie-

mannian manifold M . Let v = m
m−1u

m−1, and m
(m)
ε = minW×[ε,T ] (∆gv)

2
,



EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD... 85

M
(m)
ε = maxW×[ε,T ] |∇v|2g. Then there exists positive β = β(ε, n,mε,Mε) such

that

∆gv ≥ −
β

t

on M × [ε, T ].

Proof. Denote Q = ∆gv, and we show that Q ≥ −βt on M × [ε, T ]. For a

positive constant λ, consider the conformal metric g̃ = λ2 g of g. Now let
ũ(x, t) = u(x, λ−2t), ṽ = m

m−1 ũ
m−1. Then we have

Lmg̃ (ũ) = λ−2Lmg (u) = 0.

First, we can have that the following equation comes from ũ is a solution of
Lmg̃ (ũ) = 0.

∂

∂t
ũ = ∆g̃ũ

m = m(m− 1)ũm−2|∇ũ|2g̃ +mũm−1∆g̃ũ (5)

Just by the definition of ṽ and (5), we have the followings.

∂

∂t
ṽ = mũm−2ũt = m2ũ2m−4

(
(m− 1)|∇ũ|2g̃ + ũ∆g̃ũ

)
∇ṽ = mũm−2∇ũ

∆g̃ ṽ = mũm−3
(

(m− 2)|∇ũ|2g̃ + ũ∆g̃ũ
)

From the above three equations, we can easily check that

∂

∂t
ṽ = (m− 1)ṽ∆g̃ ṽ + |∇ṽ|2g̃. (6)

Now let Q̃ = ∆g̃ ṽ, then

∂

∂t
Q̃ =∆g̃

(
∂

∂t
ṽ

)
= (m− 1)∆g̃(ṽ∆g̃ ṽ) + ∆g̃|∇ṽ|2g̃

=(m− 1){(∆g̃ ṽ)2 + ṽ∆g̃(∆g̃ ṽ) + 2〈∇ṽ,∇∆g̃ ṽ〉}+ ∆g̃|∇v|2g̃
=(m− 1){Q̃2 + ṽ∆g̃Q̃+ 2〈∇ṽ,∇Q̃〉}

+ 2{〈∇Q̃,∇ṽ〉+ |∇∇ṽ|2g̃ +Rcg̃(∇ṽ,∇ṽ)}

≥(m− 1)ṽ∆Q̃+ 2m〈∇ṽ,∇g̃Q̃〉+

(
m− 1 +

2

n

)
Q̃2 + 2Rcg̃(∇ṽ,∇ṽ).

So we have

λ−2 ∂

∂t
Q ≥(m− 1)λ−2v∆gQ+ 2m〈∇v,∇gQ〉+

(
m− 1 +

2

n

)
λ−4Q2

+ 2λ−2Rcg(∇v,∇v),
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and

∂

∂t
Q ≥(m− 1)v∆gQ+ 2mλ2〈∇v,∇gQ〉+

(
m− 1 +

2

n

)
λ−2Q2

+ 2Rcg(∇v,∇v).

Because Rcg (∇F,∇F ) ≥ 0 on M \W (m), we have

∂

∂t
Q ≥ (m− 1)v∆gQ+ 2mλ2〈∇v,∇gQ〉+

(
m− 1 +

2

n

)
λ−2Q2

on M \W (m). With our notations

m(m)
ε = min

W (m)×[ε,T ]
Q and M (m)

ε = max
W (m)×[ε,T ]

|∇v|2g.

Since m
(m)
ε > 0, if we take λ <

√
(m−1+ 2

n )m(m)
ε

2n(n−1)k2M
(m)
ε

then we have

∂

∂t
Q ≥ (m− 1)v∆gQ+ 2mλ2〈∇v,∇gQ〉+

1

2

(
m− 1 +

2

n

)
λ−2Q2

on W (m). So finally we have

∂

∂t
Q ≥ (m− 1)v∆gQ+ 2mλ2〈∇v,∇gQ〉+

1

2

(
m− 1 +

2

n

)
λ−2Q2

on the whole of M . By the similar maximum principle argument as in the proof
of Theorem 3.1, we have

Q ≥ − 2λ2(
m− 1 + 2

n

)
t
.

Taking β = 2λ2

m−1+ 2
n

completes the proof. �

Let ν = (m− 1)β, then from (6) and Theorem 4.1 we have

∂

∂t
v +

ν

t
v − |∇v|2g ≥ 0,

by using this, we can get the following inequality for V (x, t) = tνv(x, t).
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V (x2, t2)− V (x1, t1) =

∫ t2

t1

d

dt
V (γ(t), t)dt

=

∫ t2

t1

[
∂

∂t
V (γ(t), t) +

〈
∇V (γ(t), t),

∂

∂t
γ(t)

〉
g

]
dt

=

∫ t2

t1

[
νtν−1v + tν

∂

∂t
v +

〈
tν∇v, ∂

∂t
γ

〉
g

]
dt

≥
∫ t2

t1

[
νtν−1v + tν

∂

∂t
v − tν

(
|∇v|2g +

1

4

∣∣∣∣ ∂∂tγ
∣∣∣∣2
g

)]
dt

≥ −1

4

∫ t2

t1

tν
∣∣∣∣ ∂∂tγ

∣∣∣∣2
g

dt,

In this formula, we can estimate V (x2, t2)−V (x1, t1) by obtaining the possible

minimum value of
∫ t2
t1
tν |γ̇|2dt among the paths {γ|γ(t1) = x1, γ(t2) = x2}.

And the curve can be found in the following lemma whose proof is contained
in [5].

Lemma 4.2. [5] For t1 < t2, let γ be a smooth curve in M such that γ(t1) =
x1, γ(t2) = x2. Then∫ t2

t1

tν
∣∣∣∣ ∂∂tγ

∣∣∣∣2
g

dt ≥ 1− ν
t1−ν2 − t1−ν1

{ρ(x1, x2)}2.

Furthermore if γ(t) = α
(

1
1−ν t

1−ν
)

for a shortest geodesic α from x1 to x2,

then the equality holds.

We can regard γ(t) = α
(

1
1−µ t

1−µ
)

as an optimal path in the sense that

the integral
∫ t2
t1
tµ|γ̇|2gdt is minimal, and this fact plays an important role in

this article. Note that γ(t) has the same root of a geodesic. From the above
observations and Theorem 4.1, we have the following theorem.

Theorem 4.3. Suppose all of the assumptions in Theorem 4.1 hold for a com-
plete Riemannian manifold M . Then for x1, x2 ∈M and ε < t1 < t2 < T ,

v(x2, t2) ≥
(
t1
t2

)ν [
v(x1, t1)− δ

4tν1

ρ(x1, x2)2

tδ2 − tδ1

]
,

where v = m
m−1u

m−1, ν = (m− 1)β, δ = 1− ν.

Proof. Let V (x, t) = tνv(x, t). Then by the argument after Theorem 4.1 and
by Lemma 4.2, we have

V (x2, t2)−V (x1, t1) = t2
νv(x2, t2)−t1νv(x1, t1) ≥ −1

4

1− ν
t1−ν2 − t1−ν1

{ρ(x1, x2)}2,
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and it completes the proof. �

Now we consider another gradient estimates for a different gradient quantity.

Theorem 4.4. [5] Let u is a solution of the porus medium equation L
(m)
g (u) =

0. Define H = lnu, and R = um−1∆gH +m(um−1 − 1)|∇H|2g. Then

∂

∂t
H =mR+m2|∇H|2g,

∂

∂t
R =mum−1∆gR+ 2m2um−1〈∇R,∇H〉g

+m(m− 1)R2 −m3(m− 1)|∇H|4g
+ 2m2um−1|∇∇H|2g + 2m2um−1Rcg(∇H,∇H).

In Theorem 4.4, the term −m3(m− 1)|∇H|4 is an obstacle to get a proper
lower bound for ∂

∂tH. In order to avoid this problem, we consider following

another dilation-scaled map of u. For a positive constant ω, let s = ω−1t and
define

˜̃u(x, s) = ω
1

m−1 ũ (x, ωs) = ω
1

m−1 ũ(x, t),

where ũ(x, t) = u(x, λ−2t). Then˜̃us = ωmut(x, t),

∆g
˜̃um = ωm∆gu(x, t)m.

It can be readily checked that ˜̃us = ∆g
˜̃um, hence ˜̃u is also a solution of the

porus medium equation. By using this argument we can have the following
theorem.

Theorem 4.5. Suppose all of the assumptions in Theorem 4.1 are satisfied for
a complete manifold M , and let Ba(x0) be a totally convex geodesic ball in M .

Also let m
(m)
ε = minW×[ε,T ]R

2, M
(m)
ε = maxW×[ε,T ] |∇H|2g, where H and R

are the same as in Theorem 4.4. Then there are two constants C1 = C1(m,n)
and C2 = C2(m,n) such that

sup
Ba(x0)

u(·, t) ≤ C2 inf
Ba(x0)

u(·, t+ θ),

where

θ =
C1ωa

2

λ2

provided 0 < t−θ < t+θ < T . Moreover C1 and C2 are related by the following.

C2 = 2−
4

m−1 exp
(
− m− 1

4C1m2

)
.
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Proof. For H = lnu, and R = um−1∆gH+m(um−1−1)|∇H|2g, by Theorem 4.4,

∂

∂t
H = mR+m2|∇H|2g,

∂

∂t
R = mum−1∆gR+ 2m2um−1〈∇R,∇H〉g

+m(m− 1)R2 −m3(m− 1)|∇H|4g
+ 2m2um−1|∇∇H|2g + 2m2um−1Rcg(∇H,∇H).

By taking ω = 2(n+4)
(inf u)m−1 , where inf u = infBa×[ε,T ] u(x, t), we have an extra

condition, ˜̃um−1
> 2(n + 4). Since ˜̃u is also a solution of the porus medium

equation, we can get

1

2
m(m− 1)

˜̃
R

2

−m3(m− 1)|∇ ˜̃H|4g̃ + 2m2˜̃um−1
|∇∇ ˜̃H|2g̃

≥1

2
m(m− 1)

(
(˜̃um−1

∆g̃
˜̃
H)2 + 2m˜̃um−1

(˜̃um−1
− 1)(∆g̃

˜̃
H)|∇ ˜̃H|2g̃

+m2(˜̃um−1
− 1)2|∇ ˜̃H|4g̃)−m3(m− 1)|∇ ˜̃H|4g̃ +

2

n
m2˜̃um−1

(∆
˜̃
H)2

≥0.

So, we have

∂

∂s
˜̃
R ≥m˜̃u∆g̃

˜̃
R+ 2m2˜̃u〈∇ ˜̃R,∇ ˜̃H〉g̃ +

1

2
m(m− 1)

˜̃
R

2

+ 2m2˜̃um−1
Rcg̃(∇

˜̃
H,∇ ˜̃H)

Since Rcg(∇L,∇L) ≥ 0 on Ba(x0) ∩
(
M \W (m)

)
, we have

∂

∂s
˜̃
R ≥ m˜̃u∆g̃

˜̃
R+ 2m2˜̃u〈∇ ˜̃R,∇˜̃L〉+

1

2
m(m− 1)

˜̃
R

2

,

on Ba(x0) ∩
(
M \W (m)

)
. On the other hand, on Ba(x0) ∩W (m), we have

∂

∂s
˜̃
R ≥m˜̃u∆g̃

˜̃
R+ 2m2˜̃u〈∇ ˜̃R,∇ ˜̃H〉g̃ +

1

2
m(m− 1)

˜̃
R

2

− 2m2˜̃um−1
(n− 1)k2λ2|∇ ˜̃H|2g̃.

If we take

λ <

√√√√ (m− 1)m
(m)
ε

8m(n− 1)ω (uε)
m−1

k2M
(m)
ε

,

the inequality

∂

∂s
˜̃
R ≥ m˜̃u∆

˜̃
R+ 2m2˜̃u〈∇ ˜̃R,∇ ˜̃H〉g̃ +

1

4
m(m− 1)

˜̃
R

2
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holds on Ba(x0)∩W (m), hence on the whole of Ba(x0). The maximum principle
gives the following inequality.

˜̃
R ≥ − 4

m(m− 1)s
.

So for all x1, x2 ∈ Ba(x0), let γ be a curve with γ(s1) = x1 and γ(s2) = x2.
Then we have

˜̃
H(x2, s2)− ˜̃H(x1, s1) =

∫ s2

s1

d

ds

[ ˜̃
H(γ(s), s)

]
ds

=

∫ s2

s1

∂

∂s
˜̃
H(γ(s), s) +

〈
∇ ˜̃H(γ(s), s),

dγ

ds

〉
g̃

ds

≥
∫ s2

s1

(
m
˜̃
R+m2

∣∣∣∣∇ ˜̃H∣∣∣∣2
g̃

)
(γ(s), s)

−
∣∣∣∣∇ ˜̃H(γ(s), s)

∣∣∣∣ ∣∣∣∣dγds

∣∣∣∣
g̃

ds

≥
∫ s2

s1

− 4

(m− 1)s
− 1

4m2

∣∣∣dγ
ds

∣∣∣2
g̃
ds

=− 4

m− 1
ln

(
s2

s1

)
− 1

4m2

ρ(x1, x2)2

(s2 − s1)
.

Thus we have ˜̃u(x2, s2)˜̃u(x1, s1)
≥
(s2

s1

)− 4
m−1

exp
(
− m− 1

4m2

ρ(x1, x2)2

s2 − s1

)
on Ba(x0)×

[
λ2ε
ω , λ

2ε
T

]
. Hence we have

ũ(x2, t2)

ũ(x1, t1)
≥
( t2
t1

)− 4
m−1

exp

(
− (m− 1)ωρ(x1, x2)2

4m2(t2 − t1)

)
on Ba(x0)×

[
λ2ε, λ2T

]
and

u(x2, t2)

u(x1, t1)
≥
( t2
t1

)− 4
m−1

exp

(
− (m− 1)ωρ(x1, x2)2

4m2λ2(t2 − t1)

)
on Ba(x0)× [ε, T ].

Since t2 = t1 + θ and t1 − θ > 0, then t2
t1
< 2, hence we have

u(x2, t2)

u(x1, t1)
≥ 2−

4
m−1 exp

(
− (m− 1)ωρ(x1, x2)2

4m2λ2θ

)
,

and since θ = C1ωa
2

λ2 , we have

u(x2, t2)

u(x1, t1)
≥ 2−

4
m−1 exp

(
− m− 1

4C1m2

)
.
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Thus we have
u(x1, t1) ≤ C2u(x2, t2),

where C2 = 2−
4

m−1 exp
(
− m−1

4C1m2

)
. �

If the manifold M is compact, then we can have the following corollary.

Corollary 4.6. Suppose all of the assumptions in Theorem 4.5 are satisfied
for a compact manifold M . Then there are two constants C1 = C1(m,n) and
C2 = C2(m,n), satisfying

sup
M

u(·, t) ≤ C2 inf
M
u(·, t+ θ),

where

θ =
C1ω {diam(M)}2

λ2

provided 0 < t−θ < t+θ < T . Moreover C1 and C2 are related by the following.

C2 = 2−
4

m−1 exp
(
− m− 1

4C1m2

)
.

Proof. The proof is straightforward from Theorem 4.5. �
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