• 제목/요약/키워드: Mass Matrix

검색결과 1,024건 처리시간 0.022초

터널 진동해석을 위한 반무한 경계요소법의 적용 (Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis)

  • 김문겸;이종우;전제성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

크랙을 가진 유체유동 회전 외팔 파이프의 안정성 해석 (Stability of Rotating Cantilever Pipe Conveying Fluid with Crack)

  • 김동진;윤한익;손인수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.356-359
    • /
    • 2007
  • In this paper, the stability of a rotating cantilever pipe conveying fluid with a crack is investigated by the numerical method. That is, the influences of the rotating angular velocity, mass ratio and crack severity on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived using the Euler beam theory and the Lagrange's equation. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical flow velocity for flutter is proportional to the angular velocity and the depth of crack. Also, the critical flow velocity and stability maps of the rotating pipe system as a function of mass ratio for the changing each parameter are obtained.

  • PDF

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

MATRIX ELEMENTS AND CROSS SECTION OF RAMAN SCATTERING BY ATOMIC HYDROGEN

  • 이희원
    • 천문학논총
    • /
    • 제22권1호
    • /
    • pp.21-33
    • /
    • 2007
  • Ever since the identification of 6830 and 7088 features as the Raman scattered O VI 1032, 1038 resonance doublets in symbiotic stars by Schmid (1989), Raman scattering by atomic hydrogen has been a very unique tool to investigate the mass transfer processes in symbiotic stars. Discovery of Raman scattered He II in young planetary nebulae (NGC 7027, NGC 6302, IC 5117) allow one to expect that Raman scattering can be an extremely useful tool to look into the mass loss processes in these objects. Because hydrogen is a single electron atom, their wavefunctions are known in closed form, so that exact calculations of cross sections are feasible. In this paper, I review some basic properties of Raman scattered features and present detailed and explicit matrix elements for computation of the scattering cross section of radiation with atomic hydrogen. Some astrophysical objects for which Raman scattering may be observationally pertinent are briefly mentioned.

Proteome Analysis of Vernalization-Treated Arabidopsis thaliana by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Cho, Mi-Ran;Lee, Kyung-Hyeon;Hyun, You-Bong;Lee, Il-Ha;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.427-431
    • /
    • 2007
  • In order to gain insight into the molecular changes at the protein level in plants exposed to low temperature for a long period of time (vernalization), proteome analyses of vernalization-treated Arabidopsis thaliana have been carried out by two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Fourteen proteins including ATP binding/GTP binding/translation elongation factor and glycine-rich RNA-binding protein 7 (GRP7) showed differential expression in vernalization-treated Arabidopsis thaliana. GRP7 showed the most dramatic increase in expression suggesting its involvement in response to vernalization treatment.

전달강성계수법을 이용한 3차원 직선형 구조물의 시간이력응답 해석 (Time Historical Response Analysis of Three Dimensional Rectilinear Structure using the TSCM)

  • 문덕홍;강현석;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.108-115
    • /
    • 2002
  • This paper suggests a new analysis algorithm for the time historical response of three dimensional rectilinear structure which is frequently found in a pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and the Newmark method. The present analysis algorithm for a time historical response can improve the computational accuracy and time remarkably owing to advantages of the TSCM in comparison with transfer matrix method(TMM). The structural system is modeled as a lumped mass system in this method. The analysis algorithm was formulated far the three dimensional rectilinear structure. We confirmed the validity of the present algorithm by comparing the numerical computation results of TSCM with those of TMM.

3차원 구조물의 동적응답 해석알고리즘에 관한 연구 (A Study on Dynamic Response Analysis Algorithm for Three Dimensional Structure)

  • 문덕홍;강현석;최명수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.637-642
    • /
    • 2000
  • This paper suggests new analysis algorithm for tile dynamic response of three dimensional structure which is frequently found in pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and Newmark method. Presented analysis algorithm for dynamic response can improve the computational accuracy remarkably owing to advantages of tile TSCM in comparison of transfer matrix method(TMM). Analysis system was modeled as a lumped mass system in this mettled. The analysis algorithm for dynamic response was formulated for the three dimensional structure. The validity of the this method is demonstrated through the results of numerical experiment for simple computational model by the TSCM and TMM.

  • PDF

MATLAB을 이용한 유연 다물체 시스템의 해석 및 제어 (Analysis and Control of the Flexible Multibody System Using MATLAB)

  • 정성필;박태원
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, analysis and control of the flexible multibody system using MATLAB is presented. The equations of motion of a flexible body are derived in terms of the modal coordinate. The rigid-flexible multibody dynamic solver is developed. Finite element information required to analyze motion of flexible bodies is imported from ANSYS. The modified finite element data, such as modal mass matrix, modal stiffness matrix and constraint mode shapes, is calculated in the solver. Since the solver is developed using MATLAB, it is very easy to connect with SIMULINK which is widely used to control motion of the multibody system. Several simulations are implemented to verify the developed solver. A control example is carried out and the usefulness of the developed solver is demonstrated.

전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석 (Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method)

  • 김관주;최진욱
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권10호
    • /
    • pp.1389-1393
    • /
    • 2002
  • The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.