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ABSTRACT

Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This

paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of

general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is

derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are

provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be

useful for dynamic analysis of bending-torsion coupled beam structures with joints.
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1. Introduction

Beams are often subject to bending-torsion coupled
vibrations due to either stiffness coupling or mass
coupling. It is well known from the literature that
stiffness coupling is present in composite beams ', and
mass coupling is involved in non-symmetric beams due
to the difference between the mass axis and the elastic
axis ®°.  In recent years, bending-torsion coupled
vibration of beams has attracted much attention from
many researchers with the increasing use of composite
beams and non-symmetric beams. In particular, the
dynamic stiffness matrix method has been often adopted
1791 for bending-torsion coupled vibration problems in
order to reduce the system matrix size or to obtain exact
solutions. However, exact solutions of bending-torsion
coupled vibrations for general beam structures supported
and/or connected by joints with damping have been
rarely discussed. It is believed to be desirable to develop
a systematic method for attaining exact solutions of
of distributed-

bending-torsion coupled vibration
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parameter beam structures with joints.

This paper presents a dynamic analysis method using
exact dynamic elements for general beam structures with
joints, which are subject to stiffness coupling and/or
mass coupling in bending and torsion. To this end, the
exact dynamic element method (EDEM), which was
proposed and proved useful in (0121 5g applied to a
general, unified beam equation, which accounts for both
the stiffness and mass coupling effects. The derivation
procedure to obtain the exact dynamic element matrix for
a uniform bending-torsion coupled beam is presented in
detail. However, unlike other applications of the EDEM
published in the past few years, the exact dynamic
element matrix for the bending-torsion coupled beam
necessitates a numerical procedure. Once the exact
dynamic element matrix is derived, a beam structure can
be modeled by assembling discretized elements in the
same manner as in the finite element method (FEM).
The advantages of using exact dynamic elements are
evident as already discussed in the literature: e.g., it can
deliver exact solutions for distributed-parameter systems,
a great reduction for the system matrix size is also
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expected since a uniform beam segment, regardless of
the length, can be modeled by a single element, and
changing parameters for any uniform beam section can
be easily accomplished [e-121 addition, since the
proposed formuiation not only provides us with the exact
dynamic element matrix, which is equivalent to element
matrices in the finite element method but also makes use
of the same nodal coordinate system as the finite element
method for beam elements, the proposed modeling
method can be incorporated with the finite element
method for modeling and analysis of a complicated
system.

In order to validate the proposed method, three
numerical examples are presented. A simple, open box
cantilever beam is considered as the first numerical
example, wherein eigenvalues by the proposed method
Another
example of application for a U-shaped beam hinged at

are compared with those from a reference.

two positions is presented, which is also quoted from a
reference. In the final example, a general beam structure
with joints is analysed as a rigorous application of the
proposed method. The numerical study shows that the
proposed method is very useful for the dynamic analysis
of general distributed-parameter beam structures subject
to bending-torsion coupling,.

2. Modeling of bending-torsion coupled beams

2.1 Equations of motion of a beam element
Figure 1 shows a typical, non-symmetric beam and
the associated coordinate system. The governing
equations for such a general beam subject to both mass
coupling and stiffness coupling in bending and torsion

can be represented, neglecting warping effect, ™% as

2 2 2
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elastic axis

Fig. 1 Typical non-symmetric beam and the coordinate
system

where u, 0, andp are the transverse, angular and
torsional displacements of the beam, respectively.
0, G and E are the density, shear modulus and
Young’s modulus, respectively. 4, JandJ are the area,
the diametral moment of inertia and the polar moment of
inertia, respectively, Kk being the shape factor that is
dependent on the cross sectional shape. K is the
coupling stiffness between bending and
m, I, andy, are the mass per unit length, the polar
mass moment of inertia per unit length of the beam and
the distance between the mass and elastic axes.
Equations (1-1) to (1-3) can be rewritten in a spatial state

torsion.

equation form as

u_p F o
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where F,MandT are the comesponding force,
moment and torque, respectively.
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2.2 Derivation of exact dynamic element matrix

The Laplace transformation of equations (2-1) to (2-
6) with respect to time, with zero initial conditions, leads
to

OV (s,x)

Y = B(s)¥ (s,x)

(3)
where,

¥(s,x) = @*9*¢*F*M* T*}T,

0 10 -a 0 0
00 0 b -c
Bey-| © 00 0 e d
—e 0/ 0 0 0
0 g0 1 0 0
-f 0 h 0 0 O]

Here, the asterisk represents the Laplace transform of
the corresponding state variable, s being the Laplace
variable for time. In addition,

1 GJ
a= ,b= 7
kAG GJ-EI-K
K El
€= 247 2
GJ-EI-K GJ-EI-K

e=ms2, f:myasz, g:p]sz, hzlas2

For a beam with cross section symmetric about two
principal axes, ¥, =0 . A beam without stiffness
coupling effect can be dealt with by setting X =0 . One
can set kAG =0, p =0 or a=g =0 in order to
treat an Euler-Bernoulli beam model.

The Laplace transformation of equation (3) for the
spatial coordinate X , with consideration of boundary
values at X = 0, may yield
(s, A)=[Al - B '¥(s5,0) )

Here, A is the Laplace variable for the spatial
coordinate, and ﬁ(s,/i) represents the spatial Laplace
transform for ¥ (s, x) . Evaluation of the exact dynamic
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element matrix requires an analytical expression for
[AT-B] .
used:

The following mathematical relation is

-1

Adj(A) 5

o
 det(A)

where Adj(A) represents the adjoint matrix for 4. The
determinant for [A] — B] can be written as

det[ A - B)= (A —a?) (A% - g2)(A* -y2) (6-)

where @, 3,y may be determined by solving the
following third order algebraic equation:

detlAl - B1=A% + v 2% +v, A2 493 =0  (6:2)
3

where

v; =-(dh+bg +ea), vy =-(dh+bg +ea)
vs = fPbgad + fldb-f’c?-f2gac’ +
c®he-bedh-begadh + egac’h

The adjoint matrix for [Af — B] is also expressed
analytically with the help of the symbolic operation

provided by Matlab [13]. Then, the inverse Laplace

transformation of equation (4) for X gives the
following:
¥ (s,x) = C(s,x)¥(5,0) @)

where C(s,x) is a kind of exact transfer matrix.
Substitution of the forces and displacements at x =0
and x=¢ into equation (7) and rearrangement of the
variables in equation (7) yield

Fi* ul*
M 6"
i lepiso] 2, ®
F(&) LG
M) o)
T o(&)
where,
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Dii(s,8) Dja(s,8)

D(s,5)=|
e
D3;(s,8) D3z(s,8)
The exact dynamic element matrix is described in the
appendix. Upon substituting ¢ for £, one can have the
following equation: :

* *
F U
* *
M, 6,
i Aopes,nin, )
F, hy
Mz* 62*
T, ®2

where D*(s,£) is an exact dynamic element matrix of a
bending-torsion coupled beam element in s domain.
Although D°®(s,£) is exact by definition, it is not
analytical because some parameters, e.g. ,f,y are
obtained through numerical computation.

3. Dynamic Analysis

3.1 The global system matrix and the direct
inversion

The assembling procedure for the global system
matrix is the same as that of the FEM. After meshing the
entire structure into uniform, distributed-parameter beam
elements, and lumped inertia and joint elements, one can
assemble the element dynamic matrices in the same
manner as the global matrices are constructed in the
FEM. This assembling procedure may result in the
following system matrix equation:
F'(5)=D(s)U" (s) (10)
where U” and F~ are the Laplace transforms of the
global displacement and force vectors.

From equation (10), the transfer function and
frequency response function matrices can be written by

H(s)=D!(s) an

and
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. -1
H(jo)=D""(5)|s=jo (12)

Exact -transfer function and frequency response
function matrices can be obtained through direct
computation of equations (11) and (12).

3.2 The eigenvalue problem
The eigenvalue problem associated with equation
(10) is written as
D(s)U" (s)=0 (13)
Thus, the eigenvalues associated with equation (13)
can be attained from the nontrivial solution condition, i.e.,
det{D(s)} = 0 (14)
Equation (14) necessitates a special algorithm for
solving nonlinear equations. In this paper, a modified
bisection method is adopted which is suitable for general
It is obvious that the number of
D(s)

corresponding

complex equations.
infinite contains

functions.

eigenvalues is because
transcendental The
eigenvectors can be readily obtained by using equation
(13), once equation (14) is solved.

Using the responses at nodal points, the responses at
interior points between two nodal points can be obtained
from the relation as

L3}
W) )
g @ =N6.o} Z’l (15)
(&) 2
P
where

N2 =[] b 0- .8 Do)

Equation (15) is of great use to draw exact mode
shapes.
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4. Numerical Examples

Three examples are provided here to validate the
proposed method. In the first example, a simple
composite beam is considered to compare the proposed
method with an existing method. In the second example,
a cantilever U-shaped beam hinged at two positions is
analyzed. The final example illustrates the proposed
method applied to a general beam supported by two
joints with mixed non-symmetric and symmetric cross
sections.

Figure 2 shows numerical model 1, which is
composed of a uniform, composite Timoshenko beam
clamped at the left end. The detailed specifications of the
beam are given in Table 1. The data of this example are
quoted from the reference by Banerjee (5], In this case,
the system is subject to stiffness coupling. For modeling
the current system, only one element is sufficient because
the beam is uniform throughout the entire length. Since
the left end of the beam is clamped, the order of the
system matrix is just 3. In Table 2, the natural
frequencies obtained by the proposed method are
compared with the ones quoted from [5]. It can be clearly
seen that the natural frequencies from both methods
show almost identical results.

To demonstrate the dynamic analysis of a non-
symmetric beam, a U-shaped beam, which was simulated
in [9], has been considered as the next example. Figure 3
shows the numerical model, in which a uniform U-
shaped beam is clamped at the left end and hinged at two
positions on the elastic axis. The system is subject to
mass coupling due to the non-symmetric characteristics.
The detailed specifications of the model are given in
Table 3. The Euler-Bernoulli beam model is used in this
example. The system is divided into three elements of
which nodal points are taken at hinged positions and two
boundary positions. The order of the system matrix is 7.
Table 4 compares the natural frequencies by the
proposed method and those from the reference [9]. The
table shows that the proposed method gives as accurate
results as the existing method in [9].

The final example deals with a general beam
structure, which has both non-symmetric and symmetric
cross sections and is supported by joints. Figure 4 shows
the numerical model and Table 5 describes the
specifications of the model. Three elements are used to
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model the system. In this case, the order of the system
matrix is 9. Table 6 presents eigenvalues of the model
with the transverse damping coefficient of joints varied.
It is clearly shown that the increase of damping changes
the real parts of the eigenvalues. However, since the
torsional motions are dominant for lower modes, the
applied transverse damping has only a little effect on the
modal damping of lower modes.

Fig. 2 Numerical model 1 : a composite beam 2

Table 1 Specifications of numerical model 1 Bl

Property Data
Length, m 0.1905
Width, m 0.0127
Thickness, m 0.00318
El, N m' 0.2865
GLNm 0.1891
K,Nm' 0.1143
m, kg/m 0.0544
I,,kgm 0.7770x107°
kAG, N 6343.3

Table 2 Comparison of natural frequencies for numerical
model 1 from the reference ! and the proposed method

Mode Natural Frequencies (Hz)
Reference [5] Proposed method
1 30.75 30.75
2 189.8 189.8
3 518.8 518.8
4 648.3 648.3
5 986.1 986.2

Fig. 3 Numerical model 2: a cantilever U-shaped beam
hinged at two positions



Table 3 Specifications of numerical model 2

Property Data
Length, m 3/3/1
Width, m 0.0889
Height, m 0.1524
Thickness, m 0.0071
EIl, MN 1.704
GJ, KN m’ 3.14
m, kg/m 17.61
I,,kgm 0.1342
Yo .m 0.05626

Table 4 Comparison of natural frequencies for numerical

model 2 from the reference [9] and the proposed

method
Mode Natural Frequencies (Hz)
Reference {9] Proposed method
1 5.462 5.4614
16.34 16.3429
3 26.14 26.1382

The damped natural frequencies ( @y ) of the first
four modes slightly increase with the transverse
damping while that of the fifth mode decreases with the
transverse damping. Figure 5 illustrates the first three
mode shapes of the system without damping, which are
synthesized by equation (15).

5. Concluding Remarks

In this study, an exact dynamic element matrix for a
bending-torsion coupled beam element was derived. The
exact dynamic element matrix for the bending-torsion
coupled beam element, together with the other two
element matrices for lumped inertia and joint elements,
was used to model the global system dynamic matrix of
general beam structures. Three numerical examples were
provided to show the validity and applicability of the
proposed method in the dynamic analysis of bending-
torsion coupled vibration of distributed parameter beam
systems having joints. The proposed method provides an
exact model with finite matrix size for bending-torsion
coupled beam systems with joints. The proposed method
allows bending-torsion couple vibration analysis in the
presence of both stiffness coupling and mass coupling.
The matrix size of the model is expected to be small,
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Fig. 4 Numerical model 3: a general beam structure with
transverse joints

Table 5 Specifications of numerical model 3

Element No. #1 #2 #3
Length, m 4 2 1
Width, m 0.09 0.09 0.09
Height, m 0.16 0.16 0.16

Thickness, m 0.007 0.007 0.007
EI, MN o'’ 1.8021 2.1579 1.8021

GI, KN ' 3.1726 4.1014 3.1726
M, kg/m 17.96 26.00 17.96
Iy kgm 0.1342 0.1211 0.0867
Vg.m 0.05626 0 0.05632
Transverse Joints | Damping, ¢;, Stiffness,
{2 identical) Ns/m k, , MN/m
0/20/10600 2

since most beam structures are composed of standard,
uniform beam segments and any uniform beam segment
can be modeled by a beam element without causing any
error. In addition, the proposed method makes it easy to
perform a parametric analysis on the system because any
re-meshing process is not required even when beam
dimensions are changed.
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Table 6 Comparison of eigenvalues for numerical model

3 with the joint damping varied

Eigenvalue (o + jwy )

-0 (rad/ s)/ o (Hz)
Mode ¢ =0 ¢ =20 ¢, =1000N
Ns/m Ns/m s/m
1 0.000000/ 0.000794/ 0.039704/
5.704251 5.704251 5.704303
2 0.000000/ 0.003156/ 0.157799/
8.389381 8.389382 8.389635
3 0.000000/ 0.006774/ 0.338372/
19.218267 19.218270 19.224855
4 0.000000/ 0.009777/ 0.486617/
32.646829 | 32.646831 32.651903
5 0.000000/ 0.067510/ 4.591260/
47.706620 47.706459 47.503232
g 1.0 (a) lst
g oo bending mode
g 0.4
.E 0.§ ¥ = =
8 o o)1
s r torsional mode
< .
E ol (©) 2"
ii osl bending mode
g 04
o : e
E 14 ¢
: " (dy2"
g o torsional mode
H

0 1 2 3 4 5 6 7
Axial Position (m)

Fig. 5 First two mode shapes of numerical model 3
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Appendix: The exact dynamic element
matrix of a bending-torsion coupled beam
element

Dy (s,$) DIZ(S,f):I

D (5,¢) Dyy(s,%)

:{ -Cp 'y C,™
Cy -CnCi7'Cy CpCypy™

De(s,f){

|

_011 €12 013~ Cia €15 C16
Cit=|ca1 ¢ e | Cip=fey ¢35 cy6
€31 - €32 €33 j €34 €35 C36
r04; €42 C43 1 C4q4 Cy5 Cyg6
Co=lcsy csn cs3| Cpp=|csy 55 cCs6
1C61 C62 €63 | €64 Ce5 Ce6

c11 = qs — (bg + dh)gs + foqy +(~hge? + hbgd)g,
12 =—q4 +dhqy —(gcfa + fc)q,

13 = —faqy —chq, +(fbga +bf)q,

Ciq4 =—aqq4 +(b+bga+adh)q, +

(¢*h —bdh - ahbgd + ahgc?)qq
¢y5 = bgy +acfqy + (—~bdh + czh)ql
¢16 = cq3 +afdq; -
(-afc®g +afbgd — fc* + fib)q,
cy =—cfq; +ebg, —-(f%c? —fzdb—c2he+bedh)q0
¢y =qs —(ea+dh)qy + feqs — (f 2ad — adhe)q,
¢,y = chg, —bfq, +(acf? - ache)q,
Cyy = —bq, +acfq, +(bdh—c*h)q,
Co5 = ~bgy +(bdh—c h+bea)q, +
(—fzac2 +f2bad +aczhe—badhe)q0

€y = ~=Cq4 +ceaq, + (-~fc2 + fdb)q,
c31 =—fdgz +ecq, + (—fczg + fbgd)q,
c3p = gegy + fdg, — (egea + ec)q;
¢33 = qs5 —{bg + ea)gs — feq, + (bgea + be)q,
€34 =~cq3 +afdq, -

(-afe’g +afbgd ~ fe* + fdb)qq
C35 =~cqq +ceag, +(fe? - fdb)g,

2

¢3¢ =—dqy —(~ade—bgd + c2g)q2 -
(—ac 2eg +abgde - cle+ dbe)q,

cq1 =eqy —(bge+edh —fzd)qz -

(—f2c2g + fzbgd +eghc2 - begdh)q,
car = ~eqs ~ gcfqy —(df * —edh)qy
cay == + fbgas + (cf * ~ che)qy
caq =—qs +(bg + dh)q; + foqy + (hge® — hbgd)g,
Cas = cfqs +ebgy +(—f2c? + f2db + c*he - bedh)q,
Cas = fg3 +ecqy ~ (~fe’g + fogd)qy
es) = eq3 — gofqy +(df * - edh)qy
Cs2 =894 —(e+gea+gdh)q,) -

(~edh —egadh+df * + gadf *)q,
cs3 = —Jfq3 + gchq, + (gacf 2_ egach+cf 2_ che)q,
es4 =—q4 +dhq, +(gcfa+ fc)q,
¢s5 =~qs +(dh +ea)qs + feqy +(f*ad - adhe)q,
Cs6 = —gegs + fdg, + (egca + ec)qy
co1 =44 + fb8qs +(~of 2 +che)q
¢y = fq3 + gehgy +(cf L gacf z_ egach - che)q,
cg3 = hqyq —(bgh+ahe- f2a)g, —

(bf 2 + f?bga —begah - ebh)q,
Cea = faqs —chqy — (bf + fbga)g,
cgs = —chqy —bfg, — (-ache + acf 2 g
Co6 = —q5 +(bg +ea)qs — feqy ~ (be + bgea)q,

A=—{@ - B*)B* -y )y? - )
A=(B*-1%), B=(-aP), C=(a*- p%)

¢ = Afa"' dsinhaé + B BsinhBE + y ' Csinhyé)
q; = A{dcoshad + BeoshfE + Ceoshyé}

g, = AMadsinhal + fBsinhBE + yCsinhy&}

q; = A{a2Acosha§ + ,Bchoshﬂf + 72Ccoshy§}
g4 = A{a?® Asinha& + B° Bsinh B + y > Csinh )

g5 = Afa® Acoshaé + B BeoshBE + y* Ceoshyé}



