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ABSTRACT

Ever since the identification of 6830 and 7088 features as the Raman scattered O VI 1032,
1038 resonance doublets in symbiotic stars by Schmid (1989), Raman scattering by atomic
hydrogen has been a very unique tool to investigate the mass transfer processes in symbiotic
stars. Discovery of Raman scattered He II in young planetary nebulae (NGC 7027, NGC
6302, IC 5117) allow one to expect that Raman scattering can be an extremely useful tool to
look into the mass loss processes in these objects. Because hydrogen is a single electron atom,
their wavefunctions are known in closed form, so that exact calculations of cross sections
are feasible. In this paper, I review some basic properties of Raman scattered features and
present detailed and explicit matrix elements for computation of the scattering cross section
of radiation with atomic hydrogen. Some astrophysical objects for which Raman scattering
may be observationally pertinent are briefly mentioned.
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I. INTRODUCTION

Raman scattering by atomic hydrogen was first proposed by Schmid (1989), who identified the mysterious
emission features so-called ”symbiotic bands” at 6830 Å and 7088 Å. Symbiotic stars are believed to be wide binary
systems of a giant and a hot white dwarf, where the binary separation is too large for the cold component to fill
the Roche lobe (e.g. Kenyon 1986). These broad emission features are observed only in symbiotic stars, where high
excitatioin lines are also seen. Allen (1980) provided phenomenological properties of these unidentified lines that
should be plausibly related with highly ionized species.

According to Schmid (1989), these optical emission features redward of Hα are originated from O VI 1032, 1038
resonance doublets that are incident from the hot component on to the thick H I region around the mass losing
giant component. The hydrogen atom in the ground 1 state is excited into one of infinitely many p states including
both bound and unbound state, subsequently de-excited into 2s state with the re-emission of an optical photon
redward of Hα. The scattering process is schematically illustrated in Fig. 1.

Raman scattered O VI 6830 and 7088 are quite strong in symbiotic stars and exhibit rich structures in profiles
and polarization (e.g. Harries & Howarth 1996, Schmid & Schild 1994). More specifically in a few D type symbiotics
including RR Tel, V1016 Cyg and HM Sge the profiles are overall doubly peaked and the reddest part is linearly
polarized in the direction perpendicular to that of the main part. The double-peak profile with polarization flip on
the far red wing regions is consistent with the accretion disk emission model proposed by Lee & Park (1999).

The operation of Raman scattering of O VI 1032, 1038 doublets requires the existence of a thick H I region with
H I column density NHI = 1023 cm−2, which is quite a stringent condition. The co-existence of a thick neutral
region and a strong UV emission region appears to be possible only in symbiotic stars, which explains the exclusive
existence of 6830 and 7088 features in these objects.
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Fig. 1.— A schematic diagram to show the operation of Raman scattering for resonance doublet O VI 1032 and
1038 to form Raman scattered 6830 and 7088 features.

A much less severe condition is levied upon the presence of Raman scattered He II features blueward of hy-
drogen Balmer emission lines. The relevant scattering cross section is of order 1021 cm2, two orders of magnitude
smaller than O VI 1032, 1038 doublet. Raman scattered He II features are reported in the symbiotic stars RR Tel,
V 1016 Cyg, HM Sge, where Raman scattered O VI 6830 and 7088 are also strong (e.g. van Groningen 1993, Birriel
2004).

The operation of Raman scattering by atomic hydrogen in objects other than symbiotic stars was first reported
by Péquignot et al. (1997) who discovered Raman scattered He II 4850 blueward of Hβ in the young planetary
nebula NGC 7027 (see also Zhang et al. 2005). Subsequently, the same feature was found in the butterfly planetary
nebula NGC 6302 by Groves et al. (2002). Lee et al. (2006) used their spectroscopic data using CFHT to find the
Raman scattered He II 4850 and 6545 in the young and compact planetary nebula IC 5117.

As has been pointed many researchers, the detailed profiles and polarization structures exhibited by Raman scat-
tered features show enormous information regarding the mass transfer and mass loss processes (e.g. Nussbaumer,
Schmid & Vogel 1989, Schild & Schmid 1996, Lee & Lee 1997, Schmid 2001, Jung & Lee 2004). In order to infer the
exact amount and kinematic properties of neutral material in these objects, one needs to calculate exact scattering
cross sections. In this paper, we briefly review the atomic physics related with Raman scattering involving atomic
hydrogen and present detailed matrix elements.
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II. ATOMIC PHYSICS OF RAMAN SCATTERING

The interaction of electromagnetic fields with atomic electrons is described by second order time dependent
perturbation theory (e.g. Sakurai 1967). The interaction terms p ·A and A · p in the Hamiltonian describe the
processes of the annihilation of the incident photon and creation of an outgoing photon, while the atomic electron
suffers transition from initial to final states.

In summary, the scattering cross section is given by

dσ

dΩ
= r2

0

(
ω′

ω

) ∣∣∣∣∣meωω′
∑

I

(
(x · ε(α′))BI(x · ε(α))IA

EI − EA − h̄ω
+

(x · ε(α))BI(x · ε(α′))IA

EI − EA + h̄ω′

)∣∣∣∣∣

2

, (1)

which is called the Kramers-Heisenberg formula. Here, ω and ω′ are angular frequencies of incident and outgoing
radiation. εα, εα′ are polarization vectors associated with incident and outgoing photons. r0 = e2/(mec

2) is the
classical electron radius with e and me being electron charge and mass, respectively. B, I and A stand for the final,
intermediate and initial state of the atomic electron. We take A = 1s, the ground state. Considering the dipole
nature of the radiative processes I = np, n′p, where a natural number n ≥ 2 represents a bound state and positive
real number n′ represents a continuum eigenstate. We are particularly interested in the case B = 2s, in which case
energy conservation requires

h̄ω′ = h̄ω − h̄ωLyα, (2)

where ωLyα is the angular frequency corresponding to Lyα radiation.
Noting that we have to consider all the contribution from bound np states and continuum n′p states, the

summation sign in Eq. (1) should be taken as the combination of an infinite sum over n = 2, 3, 4, . . . and an integral
over n′.

Solely for hydrogen and hydrogen-like ions, the exact wavefunctions are known in closed form, so that in this
paper, we review the matrix elements involved in Eq. (1) and present their explicit forms from which relevant cross
sections can be easily computed. The Wigner-Eckart theorem tells us that the angular part can be separately
computed, leaving the integration of the radial part. It can be shown that after averaging over polarization

σ =
8π

3
r2
0

(
ω′

ω

) ∣∣∣∣∣meωω′
∑

I

(
< B ‖ r ‖ I >< I ‖ r ‖ A >

EI − EA − h̄ω
+

< B ‖ r ‖ I >< I ‖ r ‖ A >

EI − EA + h̄ω′

)∣∣∣∣∣

2

. (3)

In the following subsections we describe the matrix elements in the summation. We will consider the matrix
elements involving bound np states and then those involving free n′p states.

(a) Bound-Bound Transitions

It is a very well know in a typical quantum mechanics text that the radial wavefunction Rnl of a hydrogen
atom is represented by associate Laguerre function. However, it is more useful to regard Rnl as a special form of a
hypergeometric confluent function, in which case

Rnl(r) =
1

(2l + 1)!

√
(n + l)!

(n− l − 1)!2n

(
2Z

n

)3/2

e−
Zr
n

(
2Zr

n

)
F (−(n− l − 1), 2l + 2,

2Zr

n
). (4)

Here, the hypergeometric function F (α, β, γ; z) is defined as

F (α, β, γ; z) = 1 +
αβ

γ
z +

α(α + 1)β(β + 1)
γ(γ + 1)

z2

2!
+ · · · . (5)

Nice recursion formulas involving hypergeometric functions let us write the radial matrix elements in a very general
form, which is described in detail by Bethe & Salpeter (1957).
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Many researchers carried out the detailed calculations of matrix elements related with Raman scattering (e.g.
Saslow & Mills 1969). In this paper, we start with the matrix elements for bound-bound state transition, introduced
by Karzas & Latter (1961), which is written as

τn′l−1
nl = < nl ‖ r ‖ n′l − 1 >

∫ ∞

0

Rn′l−1(r)Rnlrr
2dr

=
22l

(2l − 1)!

[
(n + l)!(n′ + l − 1)!
(n− l − 1)!(n′ − l)!

]1/2

(nn′)l+1(n + n′)−n−n′(n− n′)n−2−l(n′ − n)n′−l

×
{

F (−n + l + 1, l − n′, 2l,
−4nn′

(n− n′)2
)−

(
n− n′

n + n′

)2

F (−n + l − 1, l − n′, 2l,
−4nn′

(n− n′)2
)

}
. (6)

In this subsection only n′ is a natural number greater than 1.
From a direct substitution for n′ = 1, l = 1, we obtain

< 1s ‖ r ‖ np > = 4
[
(n + 1)!1!
(n− 2)!0!

]1/2

n2(n + 1)−n−1(n− 1)n−3

×
{

F (−n + 2, 0, 2,− 4n

(n− 1)2
)−

(
n− 1
n + 1

)2

F (−n, 0, 2,− 4n

(n− 1)2
)

}

= 24n7/2 (n− 1)n−5/2

(n + 1)n+5/2
. (7)

Likewise, if we set n′ = 2, l = 1, we have

< 2s ‖ r ‖ np > = 4
[

(n + 1)!2!
(n− 2)!(2− 1)!

]1/2 (2n)2(n− 2)n+2−4

(n + 2)n+2

×
{

F (−n + 2,−1, 2,
−8n

(n− 2)2
)−

(
n− 2
n + 2

)2

F (−n,−1, 2,
−8n

(n− 2)2
)

}

= 217/2n7/2
√

n2 − 1
(n− 2)n−3

(n + 2)n+3
(8)

For n′ = 3, l = 1 we have

τnp
3s = 4

[
(n + 1)!3!

(n− 2)!(3− 1)!

]1/2 (3 n)2(n− 3)n+3−4

(n + 3)n+3

×
{

F (−n + 2,−2, 2,
−12n

(n− 3)2
)−

(
n− 3
n + 3

)2

F (−n,−2, 2,
−12n

(n− 3)2
)

}
.

(9)

After some algebraic manipulation (or using a symbolic computing software) one can show that the confluent
hypergeometric function part can be simplified into

F (−n + 2,−2, 2,
−12n

(n− 3)2
)−

(
n− 3
n + 3

)2

F (−n,−2, 2,
−12n

(n− 3)2
) =

12n

(n + 3)2(n− 3)3
[
(7n2 − 27)(n + 3)

]
. (10)

This result is substituted into Eq. (9) to yield

τnp
3s = 3

√
3122n7/2

√
n2 − 1(7n2 − 27)

(n− 3)n−4

(n + 3)n+4
. (11)



ATOMIC PHYSICS OF RAMAN SCATTERING 25

Now in order to obtain the matrix elements between 3d and np states, we set n → n′ and l = 2, n = 3 to obtain

τnp
3d = < 3d ‖ r ‖ np >=

1
4 · 3!

√
5!(n + 2− 1)!

0!(n− 2)!
(12n)3(n− 3)n+3−6

(n + 3)n+3

×
{

F (0,−n + 2, 4,
−12n

(3− n)2
)−

(
n− 3
n + 3

)2

F (−2,−n + 2, 4,
−12n

(3− n)2
).

}
(12)

The confluent hypergeometric function part can be simplified by

{} = − 6n2

5(n + 3)2(n− 3)
. (13)

With this simplification we finally obtain

< 3d ‖ r ‖ np >= −123
√

3√
10

n11/2
√

n2 − 1
(n− 3)n−4

(n + 3)n+4
. (14)

(b) Bound-Free Transitions

Analytic continuation can be done for Rnl to extend its domain into the complex plane, from which we obtain
free state eigenfunctions. According to Bethe & Salpeter (1957) the wavefunction for the continuum states n′p is
given by

Rn′l=1 =
2[1 + n′2]1/2

[1− e−2πn′ ]1/2

n′2

4r2

1
2π

∫
e−2irξ/n′(ξ +

1
2
)−in′−2(ξ − 1

2
)in′−2dξ. (15)

The matrix element for a dipole operator is

< En′z|z|1s > =
1√
3

2(1 + n′2)1/2

(1− e−2πn′)1/2
n′2

∫
dr r2 1

4r2
2e−rr

[
1
2π

∫
e−2irξ/n′(ξ +

1
2
)−in′−2(ξ − 1

2
)in′−2dξ

]

=
1

4π
√

3
n′2(1 + n′2)1/2

(1− e−2πn′)1/2

∫
(ξ +

1
2
)−in′−2(ξ − 1

2
)in′−2dξ

∫ ∞

0

dr re−2irξ/n′2e−r

=
1

4π
√

3
n′2(1 + n′2)1/2

(1− e−2πn′)1/2

∫
dξ

−2
(−i + 2ξ/n′)2

(ξ +
1
2
)−in′−2(ξ − 1

2
)in′−2. (16)

Putting

f(ξ) =
(

ξ +
1
2

)−in′−2 (
ξ − 1

2

)in′−2

, (17)

we have

f ′(ξ) =
(

ξ +
1
2

)−in′−3 (
ξ − 1

2

)in′−3

× [(−in′ − 2)(ξ − 1/2) + (in′ − 2)(ξ + 1/2)]

=
(

ξ +
1
2

)−in′−3 (
ξ − 1

2

)in′−3

[−4ξ + in′]. (18)

A simple substitution gives

f ′(ξ = n′i/2) =
n′i26

(n′ + 1)3
e−2n′ tan−1(1/n′), (19)

where use is made of the relation (
n′ + i

n′ − i

)in′

= e−2n′ tan−1(1/n′). (20)
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Therefore, the contour integral is

IC =
∫

C

(ξ +
1
2
)−in′−2(ξ − 1

2
)in′−2 2dξ

(1 + i 2ξ
n′ )

2
= −n′2

2

[
−2πi · in′

(
4

n′2 + 1

)3

e−2n′ tan−1 1
n′

]

= − π26(n′)3

(n′2 + 1)3
e−2n′ tan−1 1

n′ . (21)

The matrix element is

< En′z|z|1s > =
n′2

4π
√

3
(1 + n′2)1/2

(1− e−2πn′)1/2

π26n′3

(1 + n′2)3
e−2n′ tan−1 1

n′

=
24n′5√

3(1 + n′2)5/2

e−2n′ tan−1 1
n′

(1− e−2πn′)1/2
. (22)

For 2s state, we consider

< 2s|z|n′p > = (n′)−3/2 < 2s|z|En′z >

= (n′)−3/2 n′2[1 + n′2]1/2

4π
√

3(1− e−2πn′)1/2

×
∫

(ξ + 1/2)−in′−2(ξ − 1/2)in′−2dξ

∫
dr re−2irξ/n′ 1√

2
(1− r/2). (23)

Noting that ∫
dr

1√
2
e−r( 1

2+i 2ξ

n′ )(r − r2/2) =
1√
2

(
1
a
− 1

a2

)
, (24)

where a = 1
2 + 2iξ

n′ , we consider the integral

IC2 =
1√
2

∫

C

(
ξ +

1
2

)−in′−2 (
ξ − 1

2

)in′−2 (
1
a2
− 1

a3

)
dξ. (25)

A direct substitution of ξ = in′/4 into Eq. (18) gives f ′(ξ) = 0. In order to find higher residues we compute the
second order derivative of f(ξ), of which the result is

f ′′(ξ) = 2(ξ + 1/2)−in′−4(ξ − 1/2)in′−4[10ξ2 − 5in′ξ + (1− n′2)/2]. (26)

From this, we obtain

f ′′(ξ = in′/4) =
1
4
(n′2 + 4)

(
ξ − 1/2
ξ + 1/2

)in′ 1
(ξ + 1/2)4(ξ − 1/2)4

= e−2n′ tan−1 2
n′

214

(n′2 + 4)3
. (27)

Therefore, the residue calculus shows that

IC2 =
∫

C

dξ (ξ + 1/2)−in′−2(ξ − 1/2)in′−2(a−2 − a−3)

= − n′3

i323
2πi

1
2!

214

(n′2 + 4)3
e−2n′ tan−1 2

n′

= 2π
210n′3

(n′2 + 4)3
e−2n′ tan−1 2

n′ . (28)
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Fig. 2.— Contour for the integral for bound-free matrix elements. In particular in this figure the pole is for τ3s,n′p.
For τ1s, n′p, the location of the pole is ξ = in′/2n′, and for τ2s,n′p it is at ξ = in′/4n′

From this we immediately see

< 2s|z|n′z > = (n′)3/2 n′2(1 + n′2)1/2

4π
√

3(1− e−2πn′)1/2

2π√
2

210n′3e−2n′ tan−1 2
n′

(n′2 + 4)3

=
217/2(n′)7/2(1 + n′2)1/2e−2n′ tan−1 2

n′√
3(n′2 + 4)3(1− e−2πn′)1/2

. (29)

Now we compute the matrix elements for 3s− n′p transitions. We consider the radial wavefunction

R3s(r) =
2

3
√

3
e−r/3

(
1− 2

3
r +

2
27

r2

)
. (30)

We have to evaluate

τn′z
3s = < 3s|z|n′z >= n′−3/2 < 3s|z|En′z >
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=
n′1/2[1 + n′2]1/2

4π
√

3[1− e−2πn′ ]1/2

∫

C

(
ξ +

1
2

)−in′−2 (
ξ − 1

2

)in′−2

dξ

∫ ∞

0

dr re−
2iξr

n′
2

3
√

3
e−

1
3 r

(
1− 2

3
r +

2
27

r2

)
.

(31)

First, we consider

I1 =
2

3
√

3

∫ ∞

0

dr e−( 1
3+ 2iξ

n′ )r

(
r − 2

3
r2 +

2
27

r3

)

=
2

3
√

3

∫ ∞

0

dr

[(
− ∂

∂λ

)
− 2

3

(
− ∂

∂λ

)2

+
2
27

(
− ∂

∂λ

)3
]

e−λr

=
2

3
√

3

[
1
λ2
− 2

3
2
λ3

+
2
27

6
λ4

]
with (λ =

1
3

+
2iξ

n′
). (32)

We set as before
f(ξ) = (ξ + 1/2)−in′−2(ξ − 1/2)in′−2. (33)

From Eq. (26), the third derivative is

f (3) =
(

ξ +
1
2

)−in′−5 (
ξ − 1

2

)in′−5 [
−120ξ3 + 90in′ξ2 + 18(n′2 − 1)ξ + in′(

7
2
− n′2)

]
. (34)

The residue is

f (3)(in′/6) =
(

ξ +
1
2

)−in′−5 (
ξ − 1

2

)in′−5 (
1
18

in′3 +
1
2
in′

)

=
(

ξ +
1
2

)−in′−5 (
ξ − 1

2

)in′−5
in′

18
(n′2 + 9). (35)

The contour integral becomes

IC2 =
∫

C

dξ

(
ξ +

1
2

)−in′−2 (
ξ − 1

2

)in′−2 (
2
27

6
λ4
− 2

3
2
λ3

+
1
λ2

)

=
4
9

∫

C

f(ξ)dξ

(2i/n′)4(ξ − in′/6)4
− 4

3

∫

C

f(ξ)dξ

(2i/n′)3(ξ − in′/6)3
+

∫

C

f(ξ)dξ

(2i/n′)2(ξ − in′/6)2

=
n′4

36
1
3!

(−2πi)f (3)(ξ = in′/6)− in′3

6
1
2!

(−2πi)f (2)(ξ = in′/6) +
−n′2

4
(−2πi)f (1)(ξ = in′/6)

= −3 · 3622πn′3

(n′2 + 9)4
(7n′2 + 27)e−2n′ tan−1 3

n′ , (36)

where use is made of the relation

ξ2 − 1
4

= −n′2

36
− 1

4
= − 1

36
(n′2 + 9). (37)

Therefore, we have

τn′p
3s = < 3s ‖ r ‖ n′p >=

n′1/2(1 + n′2)1/2

4π(1− e−2πn′)1/2

2
3
√

3
−3 · 3622πn′3

(n′2 + 9)4
(7n′2 + 27)e−2n′ tan−1 3

n′

=
−3
√

3122n′7/2(1 + n′2)1/2(7n′2 + 27)
(1− e−2πn′)1/2(n′2 + 9)4

e−2n′ tan−1 3
n′ . (38)

The radial wave function for the 3d state is given by

R3d(r) =
4

81
√

30
r2e−

r
3 . (39)
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We have

τn′z
3d = < 3d|z|n′z >= (n′)−

3
2 < 3d|z|En′z >

=
n′1/2(1 + n′2)1/2

4π
√

3(1− e−2πn′)1/2

∫

C

(
ξ +

1
2

)−in′−2 (
ξ − 1

2

)in′−2

dξ

×
∫ ∞

0

dr re−
2iξr

n′
4

81
√

30
r2e−

r
3 . (40)

Noting that

f (3)(ξ = in′/6) =
−2 · 364n′i
(n′2 + 9)4

e−2n′ tan−1 3
n′ , (41)

the contour integral is evaluated as

IC3 =
∫

C

(
ξ +

1
2

)−in′−2 (
ξ − 1

2

)in′−2 4
81
√

30
6
λ4

dξ

=
24

81
√

30
n′4

16
1
3!

(−2πi)f (3)

(
ξ =

in′

6

)

=
−n′5

9
√

30
4π363

(n′2 + 9)4
e−2n′ tan−1 3

n′ . (42)

Therefore, the matrix element is given by

τn′z
3d = < 3d|z|n′z >=

n′1/2(1 + n′2)1/2

4π
√

3(1− e−2πn′)1/2

−n′5

9
√

30
4π363

(n′2 + 9)4
e−2n′ tan−1 3

n′

= − 123

√
10

n′11/2(1 + n′2)1/2

(n′2 + 9)4(1− e−2πn′)1/2
e−2n′ tan−1 3

n′ . (43)

(c) Cross Sections

In this subsection, we present the cross sections obtained with a simple code incorporating the matrix elements
described in the previous subsections. Dividing the sum in Eq. (1) into a sum over bound states and an integral
over free states, the scattering cross section is given by

σ/σTh =
(

ωω′3

ω2
L

) ∣∣∣∣∣
∞∑

n=2

τ2s,npτ1s,np

(
1

ωn1 − ω
+

1
ωn1 + ω′

)
+

∫
dn′τ2s,n′pτ1s,n′p

(
1

ωn′1 − ω
+

1
ωn′1 + ω′

)∣∣∣∣∣

2

. (44)

Here, σTh = 0.665 × 10−24 cm2 is the Thomson scattering cross section, and ωL is the angular frequency corre-
sponding to the Lyman limit.

Near resonance ω − ωN1 = ∆ω ¿ ω with the Np state the dominant contribution is made by this single term.
If ∆ω is still larger than the damping term, then the cross section is approximately given by

σnr/σTh '
(

ωω′3

ω2
L

)(
τ2s,Npτ1s,Np

ωN1 − ω

)2

∝ ∆ω−2. (45)

This is the origin of the Hα wing profile, if the wing is formed from Raman scattering of flat UV radiation around
Lyβ (e.g. Lee 2000). As is pointed out by Skopal (2006) the wing profiles proportional to ∆ω−2 are also formed
from optically thin fast winds.

Very near the resonance, the scattering cross section is excellently described by a Lorentzian, as is well known
in standard text book on radiation. Due to the resonance nature, the scattering cross section ranges a large orders
of magnitude. In particular, He II emission lines arising from states with even principal quantum numbers to 2s
state possess a large scattering cross section compared with other metallic lines such as O VI 1032, 1038.
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Fig. 3.— Cross sections around Lyβ in units of the Thomson scattering cross section σTh. The total cross section
σtot is the sum of Raman scattering cross section and Rayleigh scattering cross section.

III. OBSERVATIONAL RAMIFICATIONS

Spectropolarimetry is particularly important in the case of Raman scattering, because the Raman scattered
feature is composed of purely scattered radiation without being mixed with the incident radiation that is usually
unpolarized and reduces the degree of polarization.

Thus far, Raman scattering by atomic hydrogen is unique features to symbiotic stars and young planetary
nebulae. It may be worthy to consider other class of objects that may harbor a thick neutral region in the vicinity
of a strong UV radiation source.

One may consider the broad emission line region in active galactic nuclei. In active galactic nuclei, broad
emission line region is photoionized by strong UV radiation. In a typical active galactic nuclei, a neutral region
near equatorial plane is often invoked by the unified model in order to hide the central region from direct views
for low latitude observers. Type 2 active galactic nuclei no apparent broad permitted lines in their UV and optical
spectra and characterized by high X-ray hardness may be identified with normal active galactic nuclei in the unified
model.

However, the deep gravitational potential due to the supermassive black hole giving rise to broad spectral
width may easily hide the Raman scattered component. Due to the spectral broadening by the factor λo/λi, the
Raman scattered features will appear abnormally broad. These components may be detected more readily using
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Fig. 4.— Cross sections around Lyγ in units of 10−23 cm2 and branching ratios. The thick solid line shows the
total scattering cross section, the thick dotted line represents the scattering cross section into the level 2s (for
He II λ 4850) and the thick dashed line represents the sum of the scattering cross sections into the levels 3s and
3d.

spectropolarimetry, where direct unpolarized radiation is filtered out. Lee & Yun (1998) computed polarized Hα

via Raman scattering in active galactic nuclei. It is quite interesting that narrow line radio galaxy Cyg A exhibits
enormously broad polarized Hα from Keck spectropolarimetry (Ogle et al. 1997).

Another interesting class of objects in which Raman scattering may be relevant is premain sequence stars. Stars
are formed in giant molecular cloud via gravitational collapse. The necessity of angular momentum transport
outwards leads to formation of a disk and a jet, and various shocks. Hα emission is an important signature of these
objects, which requires the presence of an ionized region.

It will be also challenging for solar physicists. The solar prominence appear in regions where neutral hydrogen
density is NHI ∼ 1020 cm−2, where He II photons can be easily Raman scattered. A fast and high resolution
spectrograph will be quite useful to this observation, which yield much information about the relative geometry of
ionized and neutral material in the solar surface.
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