• 제목/요약/키워드: Manifolds

검색결과 930건 처리시간 0.019초

GCR-LIGHTLIKE SUBMANIFOLDS OF INDEFINITE NEARLY KAEHLER MANIFOLDS

  • Kumar, Sangeet;Kumar, Rakesh;Nagaich, R.K.
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1173-1192
    • /
    • 2013
  • We introduce CR, SCR and GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds and obtain their existence in indefinite nearly Kaehler manifolds of constant holomorphic sectional curvature $c$ and of constant type ${\alpha}$. We also prove characterization theorems on the existence of totally umbilical and minimal GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds.

On Lorentzian α-Sasakian Manifolds

  • Yildiz, Ahmet;Murathan, Cengizhan
    • Kyungpook Mathematical Journal
    • /
    • 제45권1호
    • /
    • pp.95-103
    • /
    • 2005
  • The present paper deals with Lorentzian ${\alpha}-Sasakian$ manifolds with conformally flat and quasi conform ally flat curvature tensor. It is shown that in both cases, the manifold is locally isometric with a sphere $S^{2^{n}+1}(c)$. Further it is shown that an Lorentzian ${\alpha}-Sasakian$ manifold with R(X, Y).C = 0 is locally isometric with a sphere $S^{2^{n}+1}(c)$, where c = ${\alpha}^2$.

  • PDF

ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES

  • Dokuzova, Iva
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1441-1456
    • /
    • 2017
  • We consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^3=id$. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We introduce three classes of such manifolds. Two of them are determined by special properties of the curvature tensor. The third class is composed by manifolds whose structure q is parallel with respect to the Levi-Civita connection of g. We obtain some curvature properties of these manifolds (M, g, q) and give some explicit examples of such manifolds.

REMARKS ON METALLIC MAPS BETWEEN METALLIC RIEMANNIAN MANIFOLDS AND CONSTANCY OF CERTAIN MAPS

  • Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제41권2호
    • /
    • pp.343-356
    • /
    • 2019
  • In this paper, we introduce metallic maps between metallic Riemannian manifolds, provide an example and obtain certain conditions for such maps to be totally geodesic. We also give a sufficient condition for a map between metallic Riemannian manifolds to be harmonic map. Then we investigate the constancy of certain maps between metallic Riemannian manifolds and various manifolds by imposing the holomorphic-like condition. Moreover, we check the reverse case and show that some such maps are constant if there is a condition for this.

GOLDEN PARA-CONTACT METRIC MANIFOLDS

  • Beldjilali, Gherici;Bouzir, Habib
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1209-1219
    • /
    • 2022
  • The purpose of the present paper is to introduce a new class of almost para-contact metric manifolds namely, Golden para-contact metric manifolds. Then, we are particularly interested in a more special type called Golden para-Sasakian manifolds, where we will study their fundamental properties and we present many examples which justify their study.

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • 제29권4호
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

Generalized Quasi-Einstein Metrics and Contact Geometry

  • Biswas, Gour Gopal;De, Uday Chand;Yildiz, Ahmet
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.485-495
    • /
    • 2022
  • The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

ON THE ADAPTED CONNECTIONS ON KAEHLER-NORDEN SILVER MANIFOLDS

  • Mohammad, Sameer;Pandey, Pradeep Kumar
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.701-715
    • /
    • 2021
  • In this paper, we study almost complex Norden Silver manifolds and Kaehler-Norden Silver manifolds. We define adapted connections of first, second and third type to an almost complex Norden Silver manifold and establish the necessary and sufficient conditions for the integrability of almost complex Norden Silver structure. Moreover, we investigate that a complex Norden Silver map is a harmonic map between Kaehler-Norden Silver manifolds.

SOME PROPERTIES OF CRITICAL POINT EQUATIONS METRICS ON THE STATISTICAL MANIFOLDS

  • Hajar Ghahremani-Gol;Mohammad Amin Sedghi
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.471-478
    • /
    • 2024
  • The aim of this paper is to investigate some properties of the critical points equations on the statistical manifolds. We obtain some geometric equations on the statistical manifolds which admit critical point equations. We give a relation only between potential function and difference tensor for a CPE metric on the statistical manifolds to be Einstein.