
KYUNGPOOK Math. J. 45(2005), 95-103

On Lorentzian α-Sasakian Manifolds

Ahmet Yildiz
Dumlupinar University, Art and Science Faculty, Department of Mathematics,
Kutahya, Turkey
e-mail : ahmetyildiz@dumlupinar.edu.tr

Cengizhan Murathan
Uludag University, Art and Science Faculty, Department of Mathematics, Bursa,
Turkey
e-mail : cengiz@uludag.edu.tr

Abstract. The present paper deals with Lorentzian α-Sasakian manifolds with confor-

mally flat and quasi conformally flat curvature tensor. It is shown that in both cases,

the manifold is locally isometric with a sphere S2n+1(c). Further it is shown that an

Lorentzian α-Sasakian manifold with R(X, Y ).C = 0 is locally isometric with a sphere

S2n+1(c), where c = α2.

0. Introduction

In [9], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing ξ is a constant, say c. He showed
that they can be divided into three classes:

(1) homogeneous normal contact Riemannian manifolds with c > 0,

(2) global Riemannian products of a line or a circle with a Kaehler manifold of
constant holomorphic sectional curvature if c = 0 and

(3) a warped product space R×f C if c < 0.

It is known that the manifolds of class (1) are characterized by admitting a Sasakian
structure. Kenmotsu ([18]) characterized the differential geometric properties of
the manifolds of class (3); the structure so obtained is now known as Kenmotsu
structure. In general, these structures are not Sasakian ([18]).

In the Gray-Hervella classification of almost Hermitian manifolds ([13]), there
appears a class, W4, of Hermitian manifolds which are closely related to locally
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conformal Kaehler manifolds ([20]). An almost contact metric structure on a man-
ifold M is called a trans-Sasakian structure ([11]) if the product manifold M × R
belongs to the class W4. The class C6⊕C5([16], [18]) coincides with the class of the
trans-Sasakian structures of type (α, β). In fact, in [18], local nature of the two sub-
classes, namely, C5 and C6 structures, of trans-Sasakian structures are characterized
completely.

We note that trans-Sasakian structures of type (0, 0), (0, β) and (α, 0) are
cosymplectic ([1]), β-Kenmotsu ([19]) and α-Sasakian ([19]) respectively. In ([12]) it
is proved that trans-Sasakian structures are generalized quasi-Sasakian ([17]). Thus,
trans-Sasakian structures also provide a large class of generalized quasi-Sasakian
structures.

An almost contact metric structure (φ, ξ, η, g) on M is called a trans-Sasakian
structure ([11]) if (M × R, J, G) belongs to the class W4([13]), where J is the
almost complex structure on M × R defined by

J(X, fd/dt) = (φX − fξ, η(X)fd/dt)

for all vector fields X on M and smooth functions f on M×R, and G is the product
metric on M × R. This may be expressed by the condition ([21])

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX)

for some smooth functions α and β on M , and we say that the trans-Sasakian
structure is of type (α, β).

Let (x, y, z) be Cartesian coordinates in R3, then (φ, ξ, η, g) given by

ξ = ∂/∂z, η = dz − ydx, φ =




0 −1 0
1 0 0
0 −y 0


 , g =




ez + y2 0 −y
0 ez 0
−y 0 1




is a trans-Sasakian structure of type (−1/(2ez), 1/2) in R3([21]). In general, in
a 3-dimensional K-contact manifold with structures tensors (φ, ξ, η, g) for a non-
constant function f , if we define g

′
= fg + (1 − f)η ⊗ η; then (φ, ξ, η, g

′
) is a

trans-Sasakian structure of type (1/f, (1/2)ξ(ln f))([14], [15], [16]).

Corollary 1 ([7]). A trans-Sasakian structure of type (α, β) with α a nonzero
constant is always α-Sasakian.

In this case α becomes a constant. If α = 1, then α-Sasakian manifold is
Sasakian.

In this paper, we investigate Lorentzian α-Sasakian manifolds in which

(1) C = 0
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where C is the Weyl conformal curvature tensor. Then we study Lorentzian α-
Sasakian manifolds in which

(2)
∼
C = 0

where
∼
C is the quasi conformal curvature tensor. In the both cases, it is shown

that an Lorentzian α-Sasakian manifold is isometric with a sphere S2n+1(c), where
c = α2. Finally, an Lorentzian α-Sasakian manifold with

(3) R(X,Y ).C = 0

has been considered, where R(X, Y ) is considered as a derivation of the tensor
algebra at each point of the manifold of tangent vectors X,Y . It is easy to see that
R(X, Y ).R = 0 implies R(X, Y ).C = 0. So it is meaningful to undertake the study
of manifolds satisfying the condition (3).

1. Preliminaries

A differentiable manifold of dimension (2n + 1) is called Lorentzian α-Sasakian
manifold if it admits a (1, 1)−tensor field φ, a contravariant vector field ξ, a covariant
vector field η and Lorentzian metric g which satisfy ([2], [3], [4], [5], [6], [7])

η(ξ) = −1,(4)
φ2 = I + η ⊗ ξ,(5)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ),(6)
g(X, ξ) = η(X),(7)
φξ = 0, η(φX) = 0(8)

for all X,Y ∈ TM .
Also an Lorentzian α-Sasakian manifold M is satisfying ([8])

∇Xξ = −αφX,(9)
(∇Xη)Y = −αg(φX, Y ).(10)

where ∇ denotes the operator of covariant differentation with respect to the
Lorentzian metric g.

An Lorentzian α-Sasakian manifold M is said to be η-Einstein if its Ricci tensor
S is of the form

(11) S(X, Y ) = ag(X, Y ) + bη(X)η(Y )

for any vector fields X, Y , where a, b are functions on M.
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Further, on an Lorentzian α-Sasakian manifold M the following relations hold
([7], [10])

R(ξ, X)Y = α2(g(X, Y )ξ − η(Y )X),(12)
R(X, Y )ξ = α2(η(Y )X − η(X)Y ),(13)
R(ξ, X)ξ = α2(η(X)ξ + X),(14)
S(X, ξ) = 2nα2η(X),(15)

Qξ = 2nα2ξ,(16)
S(ξ, ξ) = −2nα2,(17)

where S is the Ricci curvature and Q is the Ricci operator given by S(X, Y ) =
g(QX,Y ).

2. Lorentzian α-Sasakian manifolds with C = 0

The conformal curvature tensor C on M2n+1 is defined as

C(X,Y )Z = R(X, Y )Z +
1

2n− 1

[
S(X, Z)Y − S(Y, Z)X

+g(X, Z)QY − g(Y, Z)QX

]
(18)

− τ

2n(2n− 1)
[g(X, Z)Y − g(Y,Z)X]

where
S(X,Y ) = g(QX, Y ).

Using (1) we get from (18)

R(X, Y )Z =
1

2n− 1

[
S(Y, Z)X − S(X, Z)Y

+g(Y, Z)QX − g(X, Z)QY

]
(19)

+
τ

2n(2n− 1)
[g(X, Z)Y − g(Y, Z)X] .

Taking Z = ξ in (19) and using (7), (13) and (15), we find

(α2 +
τ

2n(2n− 1)
− 2nα2

(2n− 1)
)(η(Y )X − η(X)Y )

=
1

2n− 1
(η(Y )QX − η(X)QY ).

Taking Y = ξ and using (4) we get

(20) QX = (
τ

2n
− α2)X + (

τ

2n
− α2 − 2nα2)η(X)ξ.

Thus the manifold is η-Einstein.
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Contracting (20) we get

(21) τ = 2n(2n + 1)α2.

Using (21) in (20) we find

(22) QX = 2nα2X.

Putting (22) in (19) we get after a few steps

(23) R(X,Y )Z = α2(g(Y, Z)X − g(X,Z)Y ).

Thus a conformally flat Lorentzian α-Sasakian manifold is of constant curva-
ture. The value of this constant is α2. Hence we can state.

Theorem 2. A conformally flat Lorentzian α−Sasakian manifold is locally isomet-
ric to a sphere S2n+1(c), where c = α2.

3. Lorentzian α-Sasakian manifolds with
∼
C = 0

The quasi conformal curvature tensor
∼
C on M2n+1 is defined as

∼
C(X, Y )Z = aR(X, Y )Z + b{S(Y,Z)X − S(X,Z)Y(24)

+ g(Y, Z)QX − g(X,Z)QY }
− τ

(2n + 1)
(

a

2n
+ 2b){g(Y,Z)X − g(X, Z)Y }

where a, b are constants such that ab 6= 0 and

S(Y, Z) = g(QY, Z).

Using (2), we find from (24)

R(X, Y )Z = − b

a
{S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY }(25)

+ { τ

(2n + 1)a
(

a

2n
+ 2b)}{g(Y, Z)X − g(X,Z)Y }.

Taking Z = ξ in (25) and using (7), (13) and (15), we get

(26) α2(η(Y )X − η(X)Y ) = − b

a
{η(Y )QX − η(X)QY }

+{ τ

(2n + 1)a
(

a

2n
+2b)−2nα2b

a
}(η(Y )X−η(X)Y ).

Taking Y = ξ and applying (4) we have

QX = { τ

(2n + 1)b
(

a

2n
+ 2b)− 2nα2 − a

b
α2}X(27)

+ { τ

(2n + 1)b
(

a

2n
+ 2b)− 4nα2 − a

b
α2}η(X)ξ.
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Contracting (27), we get after a few steps

(28) τ = 2n(2n + 1)α2.

Using (28) in (27), we get

(29) QX = 2nα2X.

Finally, using (29), we find from (25)

R(X,Y )Z = α2{g(Y,Z)X − g(X, Z)Y }.

Thus we can state

Theorem 3. A quasi conformally flat Lorentzian α-Sasakian manifold is locally
isometric to a sphere S2n+1(c), where c = α2.

4. Lorentzian α-Sasakian manifolds satisfying R(X,Y ).C = 0

Using (7), (12) and (15) we take X = ξ, we find from (18)

η(C(X, Y )Z) =
1

2n− 1
[(

τ

2n
− α2){g(Y,Z)η(X)(30)

− g(X, Z)η(Y )} − {S(Y, Z)η(X)− S(X, Z)η(Y )}].

Putting Z = ξ in (30) and using (7) and (15), we get

(31) η(C(X, Y )ξ) = 0.

Again X = ξ in (30)

η(C(ξ, Y )Z) = (α2 − 2nα2

2n− 1
+

τ

2n(2n + 1)
)g(Y, Z)(32)

− (α2 − 4nα2

2n− 1
+

τ

2n(2n + 1)
)η(Y )η(Z)

− 1
2n− 1

S(Y, Z).

Now

(R(ξ, Y )C)(U, V )W = R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W(33)
− C(U,R(ξ, Y )V )W − C(U, V )R(ξ, Y )W.

Using (3), we find from above

g[R(ξ, Y )C(U, V )W, ξ]− g[C(R(ξ, Y )U, V )W, ξ]
− g[C(R(ξ, Y )UV )W, ξ]− g[C(U, V )R(ξ, Y )W, ξ] = 0.
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Using (7) and (12) we get

−α2g(C(U, V )W,Y )− α2η(Y )η(C(U, V )W )− α2g(Y,U)η(C(ξ, V )W )(34)
+α2η(U)η(C(Y, V )W )− α2g(Y, V )η(C(U, ξ)W ) + α2η(V )η(C(U, Y )W )
−α2g(Y, W )η(C(U, V )ξ) + α2η(W )η(C(U, V )Y ) = 0.

Putting U = Y in (34)

−α2g(C(U, V )W,U)− α2η(U)η(C(U, V )W )− α2g(U,U)η(C(ξ, V )W )(35)
+α2η(U)η(C(U, V )W )− α2g(U, V )η(C(U, ξ)W ) + α2η(V )η(C(U,U)W )
−α2g(U,W )η(C(U, V )ξ) + α2η(W )η(C(U, V )U) = 0.

Let {∼ei : i = 1, · · · , 2n + 1} be an orthonormal basis of the tangent space at any
point, then the sum for 1 ≤ i ≤ n of the relations (35) for U =

∼
ei gives

−2nα2η(C(ξ, V )W ) = 0,

η(C(ξ, V )W ) = 0 as n > 1.(36)

Using (31) and (36), (34) takes the form

−α2g(C(U, V )W,Y )− α2η(Y )η(C(U, V )W ) + α2η(U)η(C(Y, V )W )(37)
+α2η(V )η(C(U, Y )W ) + α2η(W )η(C(U, V )Y )

= 0.

Using (30) in (37), we get

−α2g(C(U, V )W,Y )(38)

+α2η(W )
1

2n− 1
[(

τ

2n
− 1){η(U)g(Y, V )− η(V )g(U, Y )}

−{η(U)S(Y, V )− η(V )S(U, Y )}]
= 0.

In virtue of (36), (32) reduces to

(39) S(Y, Z) = (
τ

2n
− α2)g(Y, Z) + (

τ

2n + 1
− (2n + 1)α2)η(Y )η(Z).

Using (39), (37) reduces to

(40) −α2g(C(U, V )W,Y ) = 0,

i.e.,

(41) C(U, V )W = 0.

Hence the manifold is conformally flat. Using the Theorem 1, we state
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Theorem 4. If in an Lorentzian α-Sasakian manifold M2n+1(n ≥ 1) the relation
R(X,Y ).C = 0 holds, then it is locally isometric with a sphere S2n+1(c), where
c = α2.

For a conformally symmetric Riemannian manifold [1], we have ∇C = 0. Hence
for such a manifold R(X, Y ).C = 0 holds. Thus we have the following corollary of
the above theorem:

Corollary 5. A conformally symmetric Lorentzian α-Sasakian manifold M2n+1 (n ≥
1) is locally isometric with a sphere S2n+1(c), where c = α2.
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