• Title/Summary/Keyword: Magnetic positioning

Search Result 140, Processing Time 0.022 seconds

Pipeline Defects Detection Using MFL Signals and Self Quotient Image (자기 누설 신호와 SQI를 이용한 배관 결함 검출)

  • Kim, Min-Ho;Rho, Yong-Woo;Choi, Doo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • Defects positioning of underground gas pipelines using MFL(magnetic flux leakage) inspection which is one of non-destructive evaluation techniques is proposed in this paper. MFL signals acquired from MFL PIG(pipeline inspection gauge) have nonlinearity and distortion caused by various external disturbances. SQI(self quotient image), a compensation technique for nonlinearity and distortion of MFL signal, is used to correct positioning of pipeline defects. Through the experiments using artificial defects carved in the KOGAS pipeline simulation facility, it is found that the performance of proposed defect detection is greatly improved compared to that of the conventional DCT(discrete cosine transform) coefficients based detection.

LMTT Positioning System Control using DR-FNN (DR-FNN을 이용한 LMTT Positioning System 제어)

  • Lee, Jin-Woo;Sohn, Dong-Sop;Min, Jung-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2206-2208
    • /
    • 2003
  • LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system in the maritime container terminal for the port automation. The system is modeled PMLSM(Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car(mover). Because of large variant of movers weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's default etc., LMCS(Linear Motor Conveyance System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCS using DR-FNN(Dynamically Constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

The Study on Design and Dynamic Operation Characteristics of Linear Pulse I for Embroidery Machine (자수기에 맞는 LPM의 설계와 구동 특성에 관한 연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.91-93
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. In many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools, LPM can be used. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM, we used the field analysis program. The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static-conditions. The forces between forcer and platen have been calculated using the virtual work method. And we used the simulink to know the dynamic characteristics of LPM.

  • PDF

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.

Dual Stage Actuator System for High Density Magnetic Disk Drives Using a Rotary-type Electrostatic Microatuator (회전구동 정전형 마이크로 액추에이터를 이용한 고트랙밀도 HDD용 이단 구동 시스템)

  • Jung Sunghwan;Choi Jae-Joon;Park Jihwang;Lee Chang-Ho;Kim Cheol-Soon;Min Dong-Ki;Kim Young-Hoon;Lee Seung-Hi;Jeon Jong Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.174-185
    • /
    • 2005
  • This paper presents the design, fabrication, and testing results of a dual stage actuator system for a fine positioning of magnetic heads in magnetic disk drives. A novel rotary microactuator which is electrostatically driven and utilized as a secondary actuator was designed. The stator and rotor electrodes in the microactuator was revised to have the optimal shapes and hence produces much higher rotational torque compared with the conventional comb-shape electrodes. The microactuators were successfully fabricated using SoG(silicon on glass) processing technology, which is known as being cost-effective. The fabricated microactuator has the structural thickness of $45{\mu}m$ with the gap width of approximately $3{\mu}m$. The dynamic characteristic of microactuator/slider assembly was investigated, and its natural frequency and DC gain were measured to be 3.4kHz and 32nm/V, respectively. The microactuator/slider assembly was integrated into a HDD model V10 of Samsung Electronics Co. and a dual servo algorithm was tested to explore the tracking performance of dual stage actuator system where the LDV signals instead of magnetic head signals were used. Experimental results indicate that this system achieves the tracking accuracy of 30nm. This value corresponds to a track density of 85,000 track per inch(TPI), which is about 3 times greater than that of current hard disk drives.

3D Navigation Real Time RSSI-based Indoor Tracking Application

  • Lee, Boon-Giin;Lee, Young-Sook;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • Representation of various types of information in an interactive virtual reality environment on mobile devices had been an attractive and valuable research in this new era. Our main focus is presenting spatial indoor location sensing information in 3D perception in mind to replace the traditional 2D floor map using handheld PDA. Designation of 3D virtual reality by Virtual Reality Modeling Language (VRML) demonstrates its powerful ability in providing lots of useful positioning information for PDA user in real-time situation. Furthermore, by interpolating portal culling algorithm would reduce the 3D graphics rendering time on low power processing PDA significantly. By fully utilizing the CC2420 chipbased sensor nodes, wireless sensor network was established to locate user position based on Received Signal Strength Indication (RSSI) signals. Implementation of RSSI-based indoor tracking method is low-cost solution. However, due to signal diffraction, shadowing and multipath fading, high accuracy of sensing information is unable to obtain even though with sophisticated indoor estimation methods. Therefore, low complexity and flexible accuracy refinement algorithm was proposed to obtain high precision indoor sensing information. User indoor position is updated synchronously in virtual reality to real physical world. Moreover, assignment of magnetic compass could provide dynamic orientation information of user current viewpoint in real-time.

  • PDF

GPS and Inertial Sensor-based Navigation Alignment Algorithm for Initial State Alignment of AUV in Real Sea (실해역 환경에서 무인 잠수정의 초기 상태 정렬을 위한 GPS와 관성 항법 센서 기반 항법 정렬 알고리즘)

  • Kim, Gyu-Hyeon;Lee, Jihong;Lee, Phil-Yeob;Kim, Ho Sung;Lee, Hansol
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • This paper describes an alignment algorithm that estimates the initial heading angle of AUVs (Autonomous Underwater Vehicle) for starting navigation in a sea area. In the basic dead reckoning system, the initial orientation of the vehicle is very important. In particular, the initial heading value is an essential factor in determining the performance of the entire navigation system. However, the heading angle of AUVs cannot be measured accurately because the DCS (Digital Compass) corrupted by surrounding magnetic field in pointing true north direction of the absolute global coordinate system (not the same to magnetic north direction). Therefore, we constructed an experimental constraint and designed an algorithm based on extended Kalman filter using only inertial navigation sensors and a GPS (Global Positioning System) receiver basically. The value of sensor covariance was selected by comparing the navigation results with the reference data. The proposed filter estimates the initial heading angle of AUVs for navigation in a sea area and reflects sampling characteristics of each sensor. Finally, we verify the performance of the filter through experiments.

A Study on Oscillation Analysis of Linear Stepping Motor (선형 스텝핑 전동기의 진동 해석에 관한 연구)

  • Lee, S.H.;Jung, D.Y.;Kang, I.S.;Jang, H.;Kwon, M.S.;Jang, S.H.;Oh, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.154-156
    • /
    • 1999
  • A Linear Stepping Motor(LSM) can operate open loop control mode similarly to a rotary stepping motor. The linear motion without any mechanical linkage in the LSM results in several advantages for precise positioning actuators. However, to realize the more stable and higher speed control without hunting, it is necessary to derive an equivalent circuit to explain the steady-state and transisent characteristics in order to find an adequate control rule for high performance control of the LSM. In this paper, magnetic equivalent circuit is obtained, based on the structure of the LSM, and then the electric equivalent circuit of the LSM is derived by solving equations for the magnetic equivalent circuit. The 1-step response characteristic of the LSM is analyzed by the ACSL with the voltage equations, the force equations, the force equations and the kinetic equation.

  • PDF

Cogging Force Verification of the Back-yoke Length of a Moving-coil-type Slotless Linear Synchronous Motor

  • Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2009
  • The coreless linear synchronous motor (coreless LSM) has been widely used as a driving source of semiconductor production processes for machine speeding up, positioning accuracy and simple maintenance. However, this coreless LSM suffers the disadvantage of decreased thrust force created by the leakage of magnetic flux. With the goal of increasing the generated thrust force and decreasing the cogging force, the slot of the core part was removed and a moving-coil-type slotless LSM (moving-coil-type slotless LSM) is proposed in this paper. Although this moving-coil-type slotless LSM with a back-yoke at the primary side demonstrated an increase in the generated thrust force, it remained capable of generating the cogging force when the primary side was moved due to the position between the permanent magnet and the back-yoke. Therefore, we attempted to decrease the cogging force of the moving-coil-type slotless LSM. We found that the back-yoke length at the primary side needs to be made $0.5{\tau}$ longer than the integral multiple of the magnetic pole pitch in order to decrease the cogging force created by the moving-coil-type slotless LSM.

Expriments on a High Precision Planar Magnetic Levitation Stage Structure

  • Lee, Se-Han;Caraiani, Mitica;Jeon, Jeong-Woo;Lee, Ki-Chang;Kim, Yong-Joo
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.179-184
    • /
    • 2004
  • This paper is an overview of the experimental work using a Planar Magnetic Levitation Stage System structure proposed by Dr. Won-Jong Kim in his PhD thesis. Based on his results, we built an Experimental Test Stand (ETS), which enabled us to get accustomed with the new technology and to create new control structures and algorithms. The ETS is controlled by a powerful controller made of 4 DSPs mastered by a PC. This controller structure increases the controller bandwidth up to 10 kHz leading to a better emulation of an analog controller and leaving enough room for further development. Based on analyzing all the factors that can affect the performances of the system, we achieved a great accurate positioning performance of sub-nanometer RMS value.

  • PDF