Browse > Article
http://dx.doi.org/10.4283/JMAG.2009.14.1.047

Cogging Force Verification of the Back-yoke Length of a Moving-coil-type Slotless Linear Synchronous Motor  

Kim, Yong-Jae (Department of Electrical Engineering, Chosun University)
Jung, Sang-Yong (Department of Electrical Engineering, Dong-A University)
Publication Information
Abstract
The coreless linear synchronous motor (coreless LSM) has been widely used as a driving source of semiconductor production processes for machine speeding up, positioning accuracy and simple maintenance. However, this coreless LSM suffers the disadvantage of decreased thrust force created by the leakage of magnetic flux. With the goal of increasing the generated thrust force and decreasing the cogging force, the slot of the core part was removed and a moving-coil-type slotless LSM (moving-coil-type slotless LSM) is proposed in this paper. Although this moving-coil-type slotless LSM with a back-yoke at the primary side demonstrated an increase in the generated thrust force, it remained capable of generating the cogging force when the primary side was moved due to the position between the permanent magnet and the back-yoke. Therefore, we attempted to decrease the cogging force of the moving-coil-type slotless LSM. We found that the back-yoke length at the primary side needs to be made $0.5{\tau}$ longer than the integral multiple of the magnetic pole pitch in order to decrease the cogging force created by the moving-coil-type slotless LSM.
Keywords
moving-coil-type; slotless linear synchronous motor; cogging force; back-yoke length;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 M. Lee, M. Lee, S. Lee, and D. Gweon, J. Magnetics 6, 101 (2001).   과학기술학회마을
2 F. Lin, P. Shen, and Y. Kung, IEEE Trans. Magnetics 41,4401 (2005).   DOI   ScienceOn
3 T. Mizuno and H. Yamada, IEEE Trans. Magnetics 28, 3027 (1992).   DOI   ScienceOn
4 R. Akmese and J. F. Eastham, IEEE Trans. Magnetics 28, 3042 (1992).   DOI   ScienceOn
5 M. Sanada, S. Morimoto, and Y. Takeda, IEEE Trans. Industry Appl. 33, 966 (1997).   DOI   ScienceOn
6 S. I. Kim, J. P. Hong, Y. K. Kim, H. Nam, and H. I. Cho, IEEE Trans. Magnetics 42, 1219 (2006).   DOI   ScienceOn
7 S. Bae, Y. Hong, J. Lee, G. Aavin, J. Jalli, A. Lyle, H. Han, and G. W. Donohoe, J. Magnetics 13, 37 (2008).   과학기술학회마을   DOI   ScienceOn
8 S. Hisatomi, A. Yamazaki, K. Ishiyama, M. Sendoh, S.Yabukami, S. Agatsuma, K. Morooka, and K. Arai, J. Magnetics 12, 84 (2007).   과학기술학회마을   DOI   ScienceOn
9 S. Y. Jung, J. S. Chun, and H. K. Jung, IEEE Trans. Magnetics 37, 3757 (2001)   DOI   ScienceOn
10 T. S. Low, M. A. Jabbar, and T. S. Tan, IEEE Trans.Industry Appl. 3, 43 (1997).
11 M. Y. Kim, Y. C. Kim, and G. T. Kim, IEEE Trans. Magnetics 39, 2989 (2003)   DOI   ScienceOn
12 N. Bianchi, S. Bolognani, and F. Luise, IEEE Trans. Power Electronics 21, 1083 (2006)   DOI   ScienceOn
13 R. Wang and M. Kamper, IEEE Trans. Energy Conversion 19, 532 (2004).   DOI   ScienceOn
14 A. Chiba, M. Sendoh, K, Ishiyama, K, Arai, H. Kawano, A. Uchiyama, and H. Takizawa, J. Magnetics 12, 89(2007).   과학기술학회마을   DOI   ScienceOn
15 D. Son, J. Magnetics 8, 93 (2003).   과학기술학회마을   DOI   ScienceOn
16 M. Ooshima, S. Kitazawa, A. Chiba, T. Fukao, and D. Dorrell, IEEE Trans. Magnetics 42, 3461 (2006).   DOI   ScienceOn