DOI QR코드

DOI QR Code

Cogging Force Verification of the Back-yoke Length of a Moving-coil-type Slotless Linear Synchronous Motor

  • 발행 : 2009.03.31

초록

The coreless linear synchronous motor (coreless LSM) has been widely used as a driving source of semiconductor production processes for machine speeding up, positioning accuracy and simple maintenance. However, this coreless LSM suffers the disadvantage of decreased thrust force created by the leakage of magnetic flux. With the goal of increasing the generated thrust force and decreasing the cogging force, the slot of the core part was removed and a moving-coil-type slotless LSM (moving-coil-type slotless LSM) is proposed in this paper. Although this moving-coil-type slotless LSM with a back-yoke at the primary side demonstrated an increase in the generated thrust force, it remained capable of generating the cogging force when the primary side was moved due to the position between the permanent magnet and the back-yoke. Therefore, we attempted to decrease the cogging force of the moving-coil-type slotless LSM. We found that the back-yoke length at the primary side needs to be made $0.5{\tau}$ longer than the integral multiple of the magnetic pole pitch in order to decrease the cogging force created by the moving-coil-type slotless LSM.

키워드

참고문헌

  1. S. Bae, Y. Hong, J. Lee, G. Aavin, J. Jalli, A. Lyle, H. Han, and G. W. Donohoe, J. Magnetics 13, 37 (2008). https://doi.org/10.4283/JMAG.2008.13.2.037
  2. S. Hisatomi, A. Yamazaki, K. Ishiyama, M. Sendoh, S.Yabukami, S. Agatsuma, K. Morooka, and K. Arai, J. Magnetics 12, 84 (2007). https://doi.org/10.4283/JMAG.2007.12.2.084
  3. A. Chiba, M. Sendoh, K, Ishiyama, K, Arai, H. Kawano, A. Uchiyama, and H. Takizawa, J. Magnetics 12, 89(2007). https://doi.org/10.4283/JMAG.2007.12.2.089
  4. M. Lee, M. Lee, S. Lee, and D. Gweon, J. Magnetics 6, 101 (2001).
  5. D. Son, J. Magnetics 8, 93 (2003). https://doi.org/10.4283/JMAG.2003.8.2.093
  6. F. Lin, P. Shen, and Y. Kung, IEEE Trans. Magnetics 41,4401 (2005). https://doi.org/10.1109/TMAG.2005.858511
  7. T. Mizuno and H. Yamada, IEEE Trans. Magnetics 28, 3027 (1992). https://doi.org/10.1109/20.179706
  8. R. Akmese and J. F. Eastham, IEEE Trans. Magnetics 28, 3042 (1992). https://doi.org/10.1109/20.179711
  9. M. Sanada, S. Morimoto, and Y. Takeda, IEEE Trans. Industry Appl. 33, 966 (1997). https://doi.org/10.1109/28.605738
  10. R. Wang and M. Kamper, IEEE Trans. Energy Conversion 19, 532 (2004). https://doi.org/10.1109/TEC.2004.832043
  11. M. Ooshima, S. Kitazawa, A. Chiba, T. Fukao, and D. Dorrell, IEEE Trans. Magnetics 42, 3461 (2006). https://doi.org/10.1109/TMAG.2006.879071
  12. T. S. Low, M. A. Jabbar, and T. S. Tan, IEEE Trans.Industry Appl. 3, 43 (1997).
  13. S. Y. Jung, J. S. Chun, and H. K. Jung, IEEE Trans. Magnetics 37, 3757 (2001) https://doi.org/10.1109/20.952707
  14. M. Y. Kim, Y. C. Kim, and G. T. Kim, IEEE Trans. Magnetics 39, 2989 (2003) https://doi.org/10.1109/TMAG.2003.816716
  15. N. Bianchi, S. Bolognani, and F. Luise, IEEE Trans. Power Electronics 21, 1083 (2006) https://doi.org/10.1109/TPEL.2006.876824
  16. S. I. Kim, J. P. Hong, Y. K. Kim, H. Nam, and H. I. Cho, IEEE Trans. Magnetics 42, 1219 (2006). https://doi.org/10.1109/TMAG.2006.871950